-
4
-
-
77951938855
-
A contrast for independent component analysis without permutation ambiguity
-
V. Zarzoso, P. Comon, and R. Phlypo A contrast for independent component analysis without permutation ambiguity IEEE Trans. Neural Netw. 21 5 May 2010 863 868
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.5
, pp. 863-868
-
-
Zarzoso, V.1
Comon, P.2
Phlypo, R.3
-
5
-
-
0026155673
-
Indeterminacy and identifiability of blind identification
-
L. Tong, R.W. Liu, V.C. Soon, and Y.F. Huang Indeterminacy and identifiability of blind identification IEEE Trans. Circuits Syst. 38 5 May 1991 499 509
-
(1991)
IEEE Trans. Circuits Syst.
, vol.38
, Issue.5
, pp. 499-509
-
-
Tong, L.1
Liu, R.W.2
Soon, V.C.3
Huang, Y.F.4
-
6
-
-
0028416938
-
Independent component analysis, a new concept?
-
P. Comon Independent component analysis, a new concept? Signal Process. 36 3 March 1994 287 314
-
(1994)
Signal Process.
, vol.36
, Issue.3
, pp. 287-314
-
-
Comon, P.1
-
7
-
-
0030417779
-
Equivariant adaptive source separation
-
J.F. Cardoso, and H. Laheld Equivariant adaptive source separation IEEE Trans. Signal Process. 44 12 December 1996 3017 3029
-
(1996)
IEEE Trans. Signal Process.
, vol.44
, Issue.12
, pp. 3017-3029
-
-
Cardoso, J.F.1
Laheld, H.2
-
8
-
-
0000056917
-
Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information
-
H.H. Yang, and S. Amari Adaptive on-line learning algorithms for blind separation: Maximum entropy and minimum mutual information Neural Comput. 9 7 October 1997 1457 1482 (Pubitemid 127462800)
-
(1997)
Neural Computation
, vol.9
, Issue.7
, pp. 1457-1482
-
-
Yang, H.H.1
Amari, S.-I.2
-
9
-
-
0343416807
-
The nonlinear PCA learning in independent component analysis
-
E. Oja The nonlinear PCA learning in independent component analysis Neurocomputing 17 1 September 1997 25 46
-
(1997)
Neurocomputing
, vol.17
, Issue.1
, pp. 25-46
-
-
Oja, E.1
-
10
-
-
0032629347
-
Fast and robust fixed-point algorithms for independent component analysis
-
A. Hyvarinen Fast and robust fixed-point algorithms for independent component analysis IEEE Trans. Neural Netw. 10 3 May 1999 626 634
-
(1999)
IEEE Trans. Neural Netw.
, vol.10
, Issue.3
, pp. 626-634
-
-
Hyvarinen, A.1
-
11
-
-
3042628444
-
Adaptive blind separation with an unknown number of sources
-
DOI 10.1162/089976604774201622
-
J. Ye, X. Zhu, and X. Zhang Adaptive blind separation with an unknown number of sources Neural Comput. 16 8 August 2004 1641 1660 (Pubitemid 38835136)
-
(2004)
Neural Computation
, vol.16
, Issue.8
, pp. 1641-1660
-
-
Ye, J.-M.1
Zhu, X.-L.2
Zhang, X.-D.3
-
12
-
-
56049126843
-
An optimized EASI algorithm
-
J. Ye, H. Jin, Sh. Lou, and K. You An optimized EASI algorithm Signal Process. 89 3 March 2009 333 338
-
(2009)
Signal Process.
, vol.89
, Issue.3
, pp. 333-338
-
-
Ye, J.1
Jin, H.2
Lou, Sh.3
You, K.4
-
13
-
-
0002049291
-
Separation of a mixture of independent sources through a maximum likelihood approach
-
D.-T. Pham, P. Garrat, C. Jutten, Separation of a mixture of independent sources through a maximum likelihood approach, in: Proc. EUSIPCO, 1992, pp. 771-774.
-
(1992)
Proc. EUSIPCO
, pp. 771-774
-
-
Pham, D.-T.1
Garrat, P.2
Jutten, C.3
-
14
-
-
0031122399
-
Informax and maximum likelihood for blind source separation
-
J.F. Cardoso Informax and maximum likelihood for blind source separation IEEE Signal Process. Lett. 4 4 April 1997 112 114
-
(1997)
IEEE Signal Process. Lett.
, vol.4
, Issue.4
, pp. 112-114
-
-
Cardoso, J.F.1
-
15
-
-
0032187518
-
Blind signal separation: Statistical principles
-
J.F. Cardoso Blind signal separation: Statistical principles Proc. IEEE 86 10 October 1998 2009 2025
-
(1998)
Proc. IEEE
, vol.86
, Issue.10
, pp. 2009-2025
-
-
Cardoso, J.F.1
-
16
-
-
0032212834
-
The nonlinear PCA criterion in blind source separation: Relations with other approaches
-
DOI 10.1016/S0925-2312(98)00046-0, PII S0925231298000460
-
J. Karhunen, P. Pajunen, and E. Oja The non-linear PCA criterion in blind source separation: Relations with other approaches Neurocomputing 22 1-3 November 1998 5 20 (Pubitemid 28539486)
-
(1998)
Neurocomputing
, vol.22
, Issue.1-3
, pp. 5-20
-
-
Karhunen, J.1
Pajunen, P.2
Oja, E.3
-
17
-
-
0031240502
-
Least-squares method for blind source separation based on non-linear PCA
-
P. Pajunen, and J. Karhunen Least-squares method for blind source separation based on non-linear PCA Int. J. Neural Syst. 8 5-6 October/December 1998 601 612
-
(1998)
Int. J. Neural Syst.
, vol.8
, Issue.56
, pp. 601-612
-
-
Pajunen, P.1
Karhunen, J.2
-
18
-
-
33645822774
-
Adaptive nonlinear PCA algorithms for blind source separation without prewhitening
-
X.-L. Zhu, X.-D. Zhang, D.-Z. Ding, and Y. Jia Adaptive nonlinear PCA algorithms for blind source separation without prewhitening IEEE Trans. Circuits Syst. I. Regul. Pap. 53 3 March 2006 745 752
-
(2006)
IEEE Trans. Circuits Syst. I. Regul. Pap.
, vol.53
, Issue.3
, pp. 745-752
-
-
Zhu, X.-L.1
Zhang, X.-D.2
Ding, D.-Z.3
Jia, Y.4
-
19
-
-
0033171388
-
Nonsymmetric contrast for source separation
-
E. Moreau, and N.T. Moreau Nonsymmetric contrast for source separation IEEE Trans. Signal Process. 47 8 August 1999 2241 2251
-
(1999)
IEEE Trans. Signal Process.
, vol.47
, Issue.8
, pp. 2241-2251
-
-
Moreau, E.1
Moreau, N.T.2
-
20
-
-
0003807773
-
-
4th ed. Prentice-Hall Englewood Cliffs, NJ
-
S. Haykin Adaptive Filter Theory 4th ed. 2002 Prentice-Hall Englewood Cliffs, NJ
-
(2002)
Adaptive Filter Theory
-
-
Haykin, S.1
-
21
-
-
19044381876
-
Natural gradient-based recursive least-squares algorithm for blind source separation
-
X.L. Zhu, X.D. Zhang, and J.M. Ye Natural gradient-based recursive least-squares algorithm for blind source separation Sci. China Ser. F 47 1 January 2004 55 65
-
(2004)
Sci. China Ser. F
, vol.47
, Issue.1
, pp. 55-65
-
-
Zhu, X.L.1
Zhang, X.D.2
Ye, J.M.3
-
22
-
-
0029196852
-
Projection approximation subspace tracking
-
B. Yang Projection approximation subspace tracking IEEE Trans. Signal Process. 43 1 January 1995 95 107
-
(1995)
IEEE Trans. Signal Process.
, vol.43
, Issue.1
, pp. 95-107
-
-
Yang, B.1
-
23
-
-
0000396062
-
Natural gradient works efficiently in learning
-
S. Amari Natural gradient works efficiently in learning Neural Comput. 10 2 February 1998 251 276 (Pubitemid 128463152)
-
(1998)
Neural Computation
, vol.10
, Issue.2
, pp. 251-276
-
-
Amari, S.-I.1
|