메뉴 건너뛰기




Volumn , Issue , 2012, Pages

Recalling the "imprecision" of cross-project defect prediction

Author keywords

empirical software engineering; fault prediction; inspection

Indexed keywords

DEFECT PREDICTION; DEFECT PREDICTION MODELS; EMPIRICAL SOFTWARE ENGINEERING; F-SCORE; FAULT PREDICTION; HISTORICAL DATA; LOGISTIC REGRESSION MODELS; NEW PROJECTS; POOR PERFORMANCE; PREDICTION MODEL; PREDICTION PERFORMANCE; SOFTWARE QUALITY CONTROL; THRESHOLD SETTING;

EID: 84871348143     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2393596.2393669     Document Type: Conference Paper
Times cited : (241)

References (32)
  • 1
    • 47349112859 scopus 로고    scopus 로고
    • Data mining techniques for building fault-proneness models in telecom java software
    • IEEE Computer Society
    • E. Arisholm, L. C. Briand, and M. Fuglerud. Data mining techniques for building fault-proneness models in telecom java software. In ISSRE, pages 215-224. IEEE Computer Society, 2007.
    • (2007) ISSRE , pp. 215-224
    • Arisholm, E.1    Briand, L.C.2    Fuglerud, M.3
  • 2
    • 71649110371 scopus 로고    scopus 로고
    • A systematic and comprehensive investigation of methods to build and evaluate fault prediction models
    • E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic and comprehensive investigation of methods to build and evaluate fault prediction models. JSS, 83(1):2-17, 2010.
    • (2010) JSS , vol.83 , Issue.1 , pp. 2-17
    • Arisholm, E.1    Briand, L.C.2    Johannessen, E.B.3
  • 5
    • 0036649954 scopus 로고    scopus 로고
    • Assessing the applicability of fault-proneness models across objectoriented software projects
    • L. C. Briand, W. L. Melo, and J. Wüst. Assessing the applicability of fault-proneness models across objectoriented software projects. IEEE TSE, 28(7):706-720, 2002.
    • (2002) IEEE TSE , vol.28 , Issue.7 , pp. 706-720
    • Briand, L.C.1    Melo, W.L.2    Wüst, J.3
  • 8
    • 0035394038 scopus 로고    scopus 로고
    • The confounding effect of class size on the validity of object-oriented metrics
    • K. El Emam, S. Benlarbi, N. Goel, and S. Rai. The confounding effect of class size on the validity of object-oriented metrics. IEEE TSE, 27(7):630-650, 2001.
    • (2001) IEEE TSE , vol.27 , Issue.7 , pp. 630-650
    • El Emam, K.1    Benlarbi, S.2    Goel, N.3    Rai, S.4
  • 9
    • 77956619193 scopus 로고    scopus 로고
    • Populating a release history database from version control and bug tracking systems
    • Washington, DC, USA, IEEE Computer Society
    • M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from version control and bug tracking systems. In ICSM '03, page 23, Washington, DC, USA, 2003. IEEE Computer Society.
    • (2003) ICSM '03 , pp. 23
    • Fischer, M.1    Pinzger, M.2    Gall, H.3
  • 10
    • 84856676371 scopus 로고    scopus 로고
    • An investigation on the feasibility of cross-project defect prediction
    • Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang. An investigation on the feasibility of cross-project defect prediction. Autom. Softw. Eng., 19(2):167-199, 2012.
    • (2012) Autom. Softw. Eng. , vol.19 , Issue.2 , pp. 167-199
    • He, Z.1    Shu, F.2    Yang, Y.3    Li, M.4    Wang, Q.5
  • 12
    • 79959899057 scopus 로고    scopus 로고
    • Dealing with noise in defect prediction
    • IEEE
    • S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with noise in defect prediction. In ICSE'2011, pages 481-490. IEEE, 2011.
    • (2011) ICSE'2011 , pp. 481-490
    • Kim, S.1    Zhang, H.2    Wu, R.3    Gong, L.4
  • 14
    • 33750997274 scopus 로고    scopus 로고
    • Identifying and characterizing change-prone classes in two large-scale open-source products
    • A. G. Koru and H. Liu. Identifying and characterizing change-prone classes in two large-scale open-source products. Journal of Systems and Software, 80(1):63-73, 2007.
    • (2007) Journal of Systems and Software , vol.80 , Issue.1 , pp. 63-73
    • Koru, A.G.1    Liu, H.2
  • 15
    • 49349089233 scopus 로고    scopus 로고
    • Benchmarking classification models for software defect prediction: A proposed framework and novel findings
    • July
    • S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classification models for software defect prediction: A proposed framework and novel findings. IEEE TSE, 34(4):485-496, July 2008.
    • (2008) IEEE TSE , vol.34 , Issue.4 , pp. 485-496
    • Lessmann, S.1    Baesens, B.2    Mues, C.3    Pietsch, S.4
  • 16
    • 36949038929 scopus 로고    scopus 로고
    • Adequate and precise evaluation of quality models in software engineering studies
    • Washington, DC, USA, IEEE Computer Society
    • Y. Ma and B. Cukic. Adequate and precise evaluation of quality models in software engineering studies. In Proceedings of the 29th ICSE Workshops, ICSEW '07, pages 68-,Washington, DC, USA, 2007. IEEE Computer Society.
    • (2007) Proceedings of the 29th ICSE Workshops, ICSEW '07 , pp. 68
    • Ma, Y.1    Cukic, B.2
  • 17
    • 84855652194 scopus 로고    scopus 로고
    • Transfer learning for cross-company software defect prediction
    • Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer learning for cross-company software defect prediction. Information and Software Technology, 54(3):248-256, 2012.
    • (2012) Information and Software Technology , vol.54 , Issue.3 , pp. 248-256
    • Ma, Y.1    Luo, G.2    Zeng, X.3    Chen, A.4
  • 18
    • 79955126989 scopus 로고    scopus 로고
    • Replication of defect prediction studies: Problems, pitfalls and recommendations
    • T. Menzies and G. Koru, editors, ACM
    • T. Mende. Replication of defect prediction studies: problems, pitfalls and recommendations. In T. Menzies and G. Koru, editors, PROMISE, page 5. ACM, 2010.
    • (2010) PROMISE , pp. 5
    • Mende, T.1
  • 20
    • 33845782503 scopus 로고    scopus 로고
    • Data mining static code attributes to learn defect predictors
    • T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn defect predictors. IEEE TSE, 33(1):2-13, 2007.
    • (2007) IEEE TSE , vol.33 , Issue.1 , pp. 2-13
    • Menzies, T.1    Greenwald, J.2    Frank, A.3
  • 21
    • 57349133760 scopus 로고    scopus 로고
    • A comparative analysis of the efficiency of change metrics and static code attributes for defect prediction
    • W. Schäfer, M. B. Dwyer, and V. Gruhn, editors, ACM
    • R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of change metrics and static code attributes for defect prediction. In W. Schäfer, M. B. Dwyer, and V. Gruhn, editors, ICSE, pages 181-190. ACM, 2008.
    • (2008) ICSE , pp. 181-190
    • Moser, R.1    Pedrycz, W.2    Succi, G.3
  • 23
    • 84855445994 scopus 로고    scopus 로고
    • Ecological inference in empirical software engineering
    • IEEE
    • D. Posnett, V. Filkov, and P. Devanbu. Ecological inference in empirical software engineering. In ASE'2011, pages 362-371. IEEE, 2011.
    • (2011) ASE'2011 , pp. 362-371
    • Posnett, D.1    Filkov, V.2    Devanbu, P.3
  • 25
    • 78149264973 scopus 로고    scopus 로고
    • Understanding the impact of code and process metrics on post-release defects: A case study on the eclipse project
    • G. Succi, M. Morisio, and N. Nagappan, editors, ACM
    • E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams, and A. E. Hassan. Understanding the impact of code and process metrics on post-release defects: a case study on the eclipse project. In G. Succi, M. Morisio, and N. Nagappan, editors, ESEM. ACM, 2010.
    • (2010) ESEM
    • Shihab, E.1    Jiang, Z.M.2    Ibrahim, W.M.3    Adams, B.4    Hassan, A.E.5
  • 26
    • 72449126753 scopus 로고    scopus 로고
    • On the relative value of cross-company and withincompany data for defect prediction
    • Oct.
    • B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano. On the relative value of cross-company and withincompany data for defect prediction. Empirical Softw. Engg., 14(5):540-578, Oct. 2009.
    • (2009) Empirical Softw. Engg. , vol.14 , Issue.5 , pp. 540-578
    • Turhan, B.1    Menzies, T.2    Bener, A.B.3    Di Stefano, J.4
  • 27
    • 82955237725 scopus 로고    scopus 로고
    • Empirical evaluation of mixed-project defect prediction models
    • IEEE
    • B. Turhan, A. T. Misirli, and A. B. Bener. Empirical evaluation of mixed-project defect prediction models. In EUROMICRO-SEAA, pages 396-403. IEEE, 2011.
    • (2011) EUROMICRO-SEAA , pp. 396-403
    • Turhan, B.1    Misirli, A.T.2    Bener, A.B.3
  • 28
    • 80052408958 scopus 로고    scopus 로고
    • How many software metrics should be selected for defect prediction?
    • R. C. Murray and P. M. McCarthy, editors, AAAI Press
    • H. Wang, T. M. Khoshgoftaar, and N. Seliya. How many software metrics should be selected for defect prediction? In R. C. Murray and P. M. McCarthy, editors, FLAIRS Conference. AAAI Press, 2011.
    • (2011) FLAIRS Conference
    • Wang, H.1    Khoshgoftaar, T.M.2    Seliya, N.3
  • 29
    • 52549112910 scopus 로고    scopus 로고
    • Do too many cooks spoil the broth? Using the number of developers to enhance defect prediction models
    • E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Do too many cooks spoil the broth? using the number of developers to enhance defect prediction models. ESE, 13(5):539-559, 2008.
    • (2008) ESE , vol.13 , Issue.5 , pp. 539-559
    • Weyuker, E.J.1    Ostrand, T.J.2    Bell, R.M.3
  • 30
    • 42549157912 scopus 로고    scopus 로고
    • On the distribution of software faults
    • March-April
    • H. Zhang. On the distribution of software faults. IEEE TSE, 34(2):301-302, March-April 2008.
    • (2008) IEEE TSE , vol.34 , Issue.2 , pp. 301-302
    • Zhang, H.1
  • 31
    • 77949378886 scopus 로고    scopus 로고
    • Cross-project defect prediction: A large scale experiment on data vs. domain vs. process
    • H. van Vliet and V. Issarny, editors, ACM
    • T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-project defect prediction: a large scale experiment on data vs. domain vs. process. In H. van Vliet and V. Issarny, editors, ESEC/SIGSOFT FSE, pages 91-100. ACM, 2009.
    • (2009) ESEC/SIGSOFT FSE , pp. 91-100
    • Zimmermann, T.1    Nagappan, N.2    Gall, H.3    Giger, E.4    Murphy, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.