-
1
-
-
0018187654
-
Ultrastructural localization of immune complexes (IgG and C3) at the end-plate in experimental autoimmune myasthenia gravis
-
Sahashi, K. et al. 1978. Ultrastructural localization of immune complexes (IgG and C3) at the end-plate in experimental autoimmune myasthenia gravis. J. Neuropathol. Exp. Neurol. 37: 212-223.
-
(1978)
J. Neuropathol. Exp. Neurol.
, vol.37
, pp. 212-223
-
-
Sahashi, K.1
-
2
-
-
0018842751
-
Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis
-
Sahashi, K. et al. 1980. Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J. Neuropathol. Exp. Neurol. 39: 160-172.
-
(1980)
J. Neuropathol. Exp. Neurol.
, vol.39
, pp. 160-172
-
-
Sahashi, K.1
-
3
-
-
0027195312
-
Myasthenia gravis: quantitative immunocytochemical analysis of inflammatory cells and detection of complement membrane attack complex at the end-plate in 30 patients
-
Nakano, S. & A.G. Engel. 1993. Myasthenia gravis: quantitative immunocytochemical analysis of inflammatory cells and detection of complement membrane attack complex at the end-plate in 30 patients. Neurology 43: 1167-1172.
-
(1993)
Neurology
, vol.43
, pp. 1167-1172
-
-
Nakano, S.1
Engel, A.G.2
-
4
-
-
0018189697
-
Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis
-
Lennon, V.A. et al. 1978. Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J. Exp. Med. 147: 973-983.
-
(1978)
J. Exp. Med.
, vol.147
, pp. 973-983
-
-
Lennon, V.A.1
-
5
-
-
0037274489
-
Effect of myasthenic immunoglobulin G on motor end-plate morphology
-
Tsujihata, M. et al. 2003. Effect of myasthenic immunoglobulin G on motor end-plate morphology. J. Neurol. 250: 75-82.
-
(2003)
J. Neurol.
, vol.250
, pp. 75-82
-
-
Tsujihata, M.1
-
6
-
-
60849138385
-
Novel complement inhibitor limits severity of experimentally myasthenia gravis
-
Soltys, J. et al. 2009. Novel complement inhibitor limits severity of experimentally myasthenia gravis. Ann. Neurol. 65: 67-75.
-
(2009)
Ann. Neurol.
, vol.65
, pp. 67-75
-
-
Soltys, J.1
-
7
-
-
40049103666
-
Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis
-
Zhou, Y. et al. 2007. Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J. Immunol. 179: 8562-8567.
-
(2007)
J. Immunol.
, vol.179
, pp. 8562-8567
-
-
Zhou, Y.1
-
8
-
-
0024549121
-
Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6
-
Biesecker, G. & C.M. Gomez. 1989. Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J. Immunol. 142: 2654-2659.
-
(1989)
J. Immunol.
, vol.142
, pp. 2654-2659
-
-
Biesecker, G.1
Gomez, C.M.2
-
9
-
-
0030560757
-
Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis
-
Piddlesden, S.J. et al. 1996. Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis. J. Neuroimmunol. 71: 173-177.
-
(1996)
J. Neuroimmunol.
, vol.71
, pp. 173-177
-
-
Piddlesden, S.J.1
-
10
-
-
0017755136
-
Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations
-
Engel, A.G. et al. 1977. Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations. Mayo Clin. Proc. 52: 267-280.
-
(1977)
Mayo Clin. Proc.
, vol.52
, pp. 267-280
-
-
Engel, A.G.1
-
11
-
-
2942620897
-
Are MuSK antibodies the primary cause of myasthenic symptoms
-
Selcen, D. et al. 2004. Are MuSK antibodies the primary cause of myasthenic symptoms Neurology 62: 1945-1950.
-
(2004)
Neurology
, vol.62
, pp. 1945-1950
-
-
Selcen, D.1
-
12
-
-
10344264998
-
The role of complement in myasthenia gravis: serological evidence of complement consumption in vivo
-
Romi, F. et al. 2005. The role of complement in myasthenia gravis: serological evidence of complement consumption in vivo. J. Neuroimmunol. 158: 191-194.
-
(2005)
J. Neuroimmunol.
, vol.158
, pp. 191-194
-
-
Romi, F.1
-
13
-
-
0027359477
-
Soluble terminal complement components in human myasthenia gravis
-
Barohn, R.J. & R.L. Brey. 1993. Soluble terminal complement components in human myasthenia gravis. Clin. Neurol. Neurosurg. 95: 285-290.
-
(1993)
Clin. Neurol. Neurosurg.
, vol.95
, pp. 285-290
-
-
Barohn, R.J.1
Brey, R.L.2
-
14
-
-
0022363345
-
Immunopathologic events at the endplate in myasthenia gravis
-
Ashizawa, T. & S.H. Appel. 1985. Immunopathologic events at the endplate in myasthenia gravis. Springer Semin. Immunopathol. 8: 177-196.
-
(1985)
Springer Semin. Immunopathol.
, vol.8
, pp. 177-196
-
-
Ashizawa, T.1
Appel, S.H.2
-
15
-
-
70350041296
-
Paths reunited: initiation of the classical and lectin pathways of complement activation
-
Wallis, R. et al. 2010. Paths reunited: initiation of the classical and lectin pathways of complement activation. Immunobiology 215: 1-11.
-
(2010)
Immunobiology
, vol.215
, pp. 1-11
-
-
Wallis, R.1
-
16
-
-
0018425712
-
Passively transferred experimental autoimmune myasthenia gravis. Sequential and quantitative study of the motor end-plate fine structure and ultrastructural localization of immune complexes (IgG and C3), and of the acetylcholine receptor
-
Engel, A.G. et al. 1979. Passively transferred experimental autoimmune myasthenia gravis. Sequential and quantitative study of the motor end-plate fine structure and ultrastructural localization of immune complexes (IgG and C3), and of the acetylcholine receptor. Neurology 29: 179-188.
-
(1979)
Neurology
, vol.29
, pp. 179-188
-
-
Engel, A.G.1
-
17
-
-
33750081424
-
Complement membrane attack is required for endplate damage and clinical disease in passive experimental myasthenia gravis in Lewis rats
-
Chamberlain-Banoub, J. et al. 2006. Complement membrane attack is required for endplate damage and clinical disease in passive experimental myasthenia gravis in Lewis rats. Clin. Exp. Immunol. 146: 278-286.
-
(2006)
Clin. Exp. Immunol.
, vol.146
, pp. 278-286
-
-
Chamberlain-Banoub, J.1
-
18
-
-
18844476082
-
Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis
-
Tuzun, E. et al. 2003. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis. J. Immunol. 171: 3847-3854.
-
(2003)
J. Immunol.
, vol.171
, pp. 3847-3854
-
-
Tuzun, E.1
-
19
-
-
0023923870
-
C5 gene influences the development of murine myasthenia gravis
-
Christadoss, P. 1988. C5 gene influences the development of murine myasthenia gravis. J. Immunol. 140: 2589-2592.
-
(1988)
J. Immunol.
, vol.140
, pp. 2589-2592
-
-
Christadoss, P.1
-
20
-
-
34248165965
-
The structure of OMCI, a novel lipocalin inhibitor of the complement system
-
Roversi, P. et al. 2007. The structure of OMCI, a novel lipocalin inhibitor of the complement system. J. Mol. Biol. 369: 784-793.
-
(2007)
J. Mol. Biol.
, vol.369
, pp. 784-793
-
-
Roversi, P.1
-
21
-
-
0031014754
-
Expression of CD59, a regulator of the membrane attack complex of complement, on human skeletal muscle fibers
-
Navenot, J.M. et al. 1997. Expression of CD59, a regulator of the membrane attack complex of complement, on human skeletal muscle fibers. Muscle Nerve 20: 92-96.
-
(1997)
Muscle Nerve
, vol.20
, pp. 92-96
-
-
Navenot, J.M.1
-
22
-
-
4544278812
-
Complement regulators in extraocular muscle and experimental autoimmune myasthenia gravis
-
Kaminski, H.J. et al. 2004. Complement regulators in extraocular muscle and experimental autoimmune myasthenia gravis. Exp. Neurol. 189: 333-342.
-
(2004)
Exp. Neurol.
, vol.189
, pp. 333-342
-
-
Kaminski, H.J.1
-
24
-
-
37849188628
-
Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis
-
Tuzun, E. et al. 2006. Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis. J. Neuroimmunol. 181: 29-33.
-
(2006)
J. Neuroimmunol.
, vol.181
, pp. 29-33
-
-
Tuzun, E.1
-
25
-
-
33750072293
-
The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice
-
Morgan, B.P. et al. 2006. The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice. Clin. Exp. Immunol. 146: 294-302.
-
(2006)
Clin. Exp. Immunol.
, vol.146
, pp. 294-302
-
-
Morgan, B.P.1
-
26
-
-
33750617634
-
Deficiency of decay accelerating factor and CD59 leads to crisis in experimental myasthenia
-
Kaminski, H.J. et al. 2006. Deficiency of decay accelerating factor and CD59 leads to crisis in experimental myasthenia. Exp. Neurol. 202: 287-293.
-
(2006)
Exp. Neurol.
, vol.202
, pp. 287-293
-
-
Kaminski, H.J.1
-
27
-
-
84859734581
-
Protective effect of scFv-DAF fusion protein on the complement attack to acetylcholine receptor: a possible option for treatment of myasthenia gravis
-
Song, C. et al. 2012. Protective effect of scFv-DAF fusion protein on the complement attack to acetylcholine receptor: a possible option for treatment of myasthenia gravis. Muscle Nerve 45: 668-675.
-
(2012)
Muscle Nerve
, vol.45
, pp. 668-675
-
-
Song, C.1
|