-
1
-
-
13044304431
-
-
10.1063/1.459170
-
J. C. Tully, J. Chem. Phys. 93, 1061 (1990). 10.1063/1.459170
-
(1990)
J. Chem. Phys.
, vol.93
, pp. 1061
-
-
Tully, J.C.1
-
2
-
-
0002507440
-
-
edited by D. L. Thompson (World Scientific, New York)
-
J. C. Tully, in Modern Methods for Multidimensional Dynamics Computations in Chemistry, edited by, D. L. Thompson, (World Scientific, New York, 1998), p. 34.
-
(1998)
Modern Methods for Multidimensional Dynamics Computations in Chemistry
, pp. 34
-
-
Tully, J.C.1
-
3
-
-
36448999802
-
-
10.1063/1.467204
-
F. Webster, E. T. Wang, P. J. Rossky, and R. A. Friesner, J. Chem. Phys. 100, 4835 (1994). 10.1063/1.467204
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 4835
-
-
Webster, F.1
Wang, E.T.2
Rossky, P.J.3
Friesner, R.A.4
-
4
-
-
0000374824
-
-
10.1063/1.480178
-
O. V. Prezhdo, J. Chem. Phys. 111, 8366 (1999). 10.1063/1.480178
-
(1999)
J. Chem. Phys.
, vol.111
, pp. 8366
-
-
Prezhdo, O.V.1
-
5
-
-
5644265153
-
-
10.1039/b405601a
-
A. W. Jasper, C. Zhu, S. Nangia, and D. G. Truhlar, Faraday Discuss. 127, 1 (2004). 10.1039/b405601a
-
(2004)
Faraday Discuss.
, vol.127
, pp. 1
-
-
Jasper, A.W.1
Zhu, C.2
Nangia, S.3
Truhlar, D.G.4
-
11
-
-
0003081433
-
-
10.1103/PhysRevLett.78.578
-
G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578 (1997). 10.1103/PhysRevLett.78.578
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 578
-
-
Stock, G.1
Thoss, M.2
-
13
-
-
0002738928
-
-
10.1103/PhysRevA.59.64
-
M. Thoss and G. Stock, Phys. Rev. A 59, 64 (1999). 10.1103/PhysRevA.59.64
-
(1999)
Phys. Rev. A
, vol.59
, pp. 64
-
-
Thoss, M.1
Stock, G.2
-
15
-
-
0035810449
-
-
10.1021/jp003712k
-
W. H. Miller, J. Phys. Chem. A 105, 2942 (2001). 10.1021/jp003712k
-
(2001)
J. Phys. Chem. A
, vol.105
, pp. 2942
-
-
Miller, W.H.1
-
16
-
-
3342973888
-
-
10.1146/annurev.physchem.55.091602.094429
-
M. Thoss and H. B. Wang, Annu. Rev. Phys. Chem. 55, 299 (2004). 10.1146/annurev.physchem.55.091602.094429
-
(2004)
Annu. Rev. Phys. Chem.
, vol.55
, pp. 299
-
-
Thoss, M.1
Wang, H.B.2
-
20
-
-
82555186536
-
-
10.1063/1.3664763
-
P. Huo and D. F. Coker, J. Chem. Phys. 135, 201101 (2011). 10.1063/1.3664763
-
(2011)
J. Chem. Phys.
, vol.135
, pp. 201101
-
-
Huo, P.1
Coker, D.F.2
-
21
-
-
85150403390
-
-
For a review with references see, [, ]. 10.1146/annurev.physchem.57. 032905.104702
-
For a review with references see, [R. Kapral, Ann. Rev. Phys. Chem. 57, 129 (2006)]. 10.1146/annurev.physchem.57.032905.104702
-
(2006)
Ann. Rev. Phys. Chem.
, vol.57
, pp. 129
-
-
Kapral, R.1
-
26
-
-
0004258941
-
-
edited by U. Weiss (World Scientific, Singapore)
-
Quantum Dissipative Systems, edited by, U. Weiss, (World Scientific, Singapore, 1999).
-
(1999)
Quantum Dissipative Systems
-
-
-
28
-
-
0004161951
-
-
edited by J. Waugh (Academic, New York), Vol.
-
A. Redfield, in Advances in Magnetic Resonance, edited by, J. Waugh, (Academic, New York, 1965), Vol. 1.
-
(1965)
Advances in Magnetic Resonance
, vol.1
-
-
Redfield, A.1
-
31
-
-
0033636381
-
-
10.1016/S0370-1573(99)00047-2
-
M. Beck, A. Jckle, G. Worth, and H.-D. Meyer, Phys. Rep. 324, 1 (2000). 10.1016/S0370-1573(99)00047-2
-
(2000)
Phys. Rep.
, vol.324
, pp. 1
-
-
Beck, M.1
Jckle, A.2
Worth, G.3
Meyer, H.-D.4
-
32
-
-
3342927029
-
-
10.1146/annurev.physchem.55.091602.094449
-
M. Marques and E. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004). 10.1146/annurev.physchem.55.091602.094449
-
(2004)
Annu. Rev. Phys. Chem.
, vol.55
, pp. 427
-
-
Marques, M.1
Gross, E.2
-
34
-
-
67650740013
-
-
10.1063/1.3173823
-
H. Wang and M. Thoss, J. Chem. Phys. 131, 024114 (2009). 10.1063/1.3173823
-
(2009)
J. Chem. Phys.
, vol.131
, pp. 024114
-
-
Wang, H.1
Thoss, M.2
-
37
-
-
0003692531
-
-
edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore)
-
J. C. Tully, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by, B. J. Berne, G. Ciccotti, and, D. F. Coker, (World Scientific, Singapore, 1998).
-
(1998)
Classical and Quantum Dynamics in Condensed Phase Simulations
-
-
Tully, J.C.1
-
38
-
-
85034857818
-
-
10.1146/annurev.pc.45.100194.000503
-
M. F. Herman, Annu. Rev. Phys. Chem. 45, 83 (1994). 10.1146/annurev.pc. 45.100194.000503
-
(1994)
Annu. Rev. Phys. Chem.
, vol.45
, pp. 83
-
-
Herman, M.F.1
-
40
-
-
4444279221
-
-
10.1063/1.1771641
-
Q. Shi and E. Geva, J. Chem. Phys. 121, 3393 (2004). 10.1063/1.1771641
-
(2004)
J. Chem. Phys.
, vol.121
, pp. 3393
-
-
Shi, Q.1
Geva, E.2
-
46
-
-
0037461490
-
-
10.1063/1.1522712
-
I. Horenko, C. Salzmann, B. Schmidt, and C. Schutte, J. Chem. Phys. 117, 11075 (2002). 10.1063/1.1522712
-
(2002)
J. Chem. Phys.
, vol.117
, pp. 11075
-
-
Horenko, I.1
Salzmann, C.2
Schmidt, B.3
Schutte, C.4
-
49
-
-
0002839282
-
-
edited by L. C. Biedenharn and H. V. Dam (Academic, New York)
-
J. Schwinger, in Quantum Theory of Angular Momentum, edited by, L. C. Biedenharn, and, H. V. Dam, (Academic, New York, 1965), p. 229.
-
(1965)
Quantum Theory of Angular Momentum
, pp. 229
-
-
Schwinger, J.1
-
52
-
-
84857839392
-
-
10.1063/1.3685420
-
A. Kelly, R. van Zon, J. M. Schofield, and R. Kapral, J. Chem. Phys. 136, 084101 (2012). 10.1063/1.3685420
-
(2012)
J. Chem. Phys.
, vol.136
, pp. 084101
-
-
Kelly, A.1
Van Zon, R.2
Schofield, J.M.3
Kapral, R.4
-
54
-
-
25044456610
-
-
10.1103/PhysRev.131.2766
-
R. Glauber, Phys. Rev. 131, 2766 (1963). 10.1103/PhysRev.131.2766
-
(1963)
Phys. Rev.
, vol.131
, pp. 2766
-
-
Glauber, R.1
-
55
-
-
84871242747
-
-
the present formulation, since we are interested in constructing an algorithm for the evolution of the QCLE in the subsystem basis and its mapping onto the harmonic oscillator single-excitation subspace, the coherent states are introduced in the mapping-transformed space. An interesting alternative approach is to introduce the coherent states directly in the subsystem space and bypass the mapping transformation. This approach, however, requires one to work with a microscopic model in which the Hamiltonian is conveniently represented in the second quantized form with the helof fermionic or bosonic creation and annihilation operators. We shall not pursue this alternative further here
-
In the present formulation, since we are interested in constructing an algorithm for the evolution of the QCLE in the subsystem basis and its mapping onto the harmonic oscillator single-excitation subspace, the coherent states are introduced in the mapping-transformed space. An interesting alternative approach is to introduce the coherent states directly in the subsystem space and bypass the mapping transformation. This approach, however, requires one to work with a microscopic model in which the Hamiltonian is conveniently represented in the second quantized form with the help of fermionic or bosonic creation and annihilation operators. We shall not pursue this alternative further here.
-
-
-
-
58
-
-
0001191454
-
-
10.1103/PhysRevD.37.3522
-
W. Boucher and J. Traschen, Phys. Rev. D 37, 3522 (1988). 10.1103/PhysRevD.37.3522
-
(1988)
Phys. Rev. D
, vol.37
, pp. 3522
-
-
Boucher, W.1
Traschen, J.2
-
61
-
-
84871238750
-
-
Although Eqs. are not in Hamiltonian form, through a simple non-canonical transformation where the coherent state variables are scaled by a constant factor, they may be cast into Hamiltonian form
-
Although Eqs. are not in Hamiltonian form, through a simple non-canonical transformation where the coherent state variables are scaled by a constant factor, they may be cast into Hamiltonian form.
-
-
-
-
62
-
-
84871192663
-
-
The use of the traceless form of the Hamiltonian from the outset simplifies the calculation. In particular, when the anti-normal form of the annihilation and creation operator product is introduced to evaluate the propagator, the trace term does not appear and the structure of the equations is simpler. We have chosen to carry out the derivation with the usual form of the Hamiltonian to stress that the final results are independent of how one chooses to write the Hamiltonian
-
The use of the traceless form of the Hamiltonian from the outset simplifies the calculation. In particular, when the anti-normal form of the annihilation and creation operator product is introduced to evaluate the propagator, the trace term does not appear and the structure of the equations is simpler. We have chosen to carry out the derivation with the usual form of the Hamiltonian to stress that the final results are independent of how one chooses to write the Hamiltonian.
-
-
-
|