메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1105-1112

Active learning for relation type extension with local and global data views

Author keywords

co testing; co training; distributional similarity; infactive learning; information extraction; inrelation extraction

Indexed keywords

CO-TESTING; CO-TRAINING; DISTRIBUTIONAL SIMILARITIES; INFACTIVE LEARNING; INFORMATION EXTRACTION;

EID: 84871102140     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2396761.2398409     Document Type: Conference Paper
Times cited : (27)

References (21)
  • 2
    • 80053262847 scopus 로고    scopus 로고
    • A shortest path dependency kernel for relation extraction
    • Razvan C. Bunescu and Raymond J. Mooney. 2005. A shortest path dependency kernel for relation extraction. In Proceedings of HLT/EMNLP.
    • (2005) Proceedings of HLT/EMNLP
    • Bunescu, R.C.1    Mooney, R.J.2
  • 3
    • 84859079607 scopus 로고    scopus 로고
    • Exploiting background knowledge for relation extraction
    • Yee Seng Chan and Dan Roth. 2010. Exploiting background knowledge for relation extraction. In Proc. of COLING.
    • (2010) Proc. of COLING
    • Chan, Y.S.1    Roth, D.2
  • 4
    • 85119383022 scopus 로고    scopus 로고
    • Unsupervised Models for Named Entity Classification
    • Michael Collins and Yoram Singer. 1999. Unsupervised Models for Named Entity Classification. In Proc. of EMNLP-99.
    • (1999) Proc. of EMNLP-99
    • Collins, M.1    Singer, Y.2
  • 5
    • 85185409699 scopus 로고    scopus 로고
    • Multi-task transfer learning for weakly-supervised relation extraction
    • Jing Jiang. 2009. Multi-task transfer learning for weakly-supervised relation extraction. In Proceedings of ACL-IJCNLP-09.
    • (2009) Proceedings of ACL-IJCNLP-09
    • Jiang, J.1
  • 6
    • 84858434398 scopus 로고    scopus 로고
    • A systematic exploration of the feature space for relation extraction
    • Jing Jiang and ChengXiang Zhai. 2007. A systematic exploration of the feature space for relation extraction. In Proceedings of HLT-NAACL- 07.
    • (2007) Proceedings of HLT-NAACL- 07
    • Jiang, J.1    Zhai, C.2
  • 8
    • 85140744814 scopus 로고    scopus 로고
    • Combining lexical, syntactic, and semantic features with maximum entropy models for information extraction
    • Nanda Kambhatla. 2004. Combining lexical, syntactic, and semantic features with maximum entropy models for information extraction. In Proceedings of ACL-04.
    • (2004) Proceedings of ACL-04
    • Kambhatla, N.1
  • 9
    • 80053271784 scopus 로고    scopus 로고
    • Not all seeds are equal: Measuring the quality of text mining seeds
    • Zornista Kozareva and Eduard Hovy. 2010. Not all seeds are equal: Measuring the quality of text mining seeds. In NAACL-10.
    • (2010) NAACL-10
    • Kozareva, Z.1    Hovy, E.2
  • 10
    • 85185398851 scopus 로고    scopus 로고
    • Phrase Clustering for Discriminative Learning
    • Dekang Lin and Xiaoyun Wu. 2009. Phrase Clustering for Discriminative Learning. In Proc. of ACL-09.
    • (2009) Proc. of ACL-09
    • Lin, D.1    Wu, X.2
  • 11
    • 85117730830 scopus 로고    scopus 로고
    • Name Tagging with Word Clusters and Discriminative Training
    • Scott Miller, Jethran Guinness and Alex Zamanian. 2004. Name Tagging with Word Clusters and Discriminative Training. In Proc. of HLT-NAACL.
    • (2004) Proc. of HLT-NAACL
    • Miller, S.1    Guinness, J.2    Zamanian, A.3
  • 13
    • 84859079605 scopus 로고    scopus 로고
    • Semi-supervised Semantic Pattern Discovery with Guidance from Unsupervised Pattern Clusters
    • Ang Sun and Ralph Grishman. 2010. Semi-supervised Semantic Pattern Discovery with Guidance from Unsupervised Pattern Clusters. In Proc. of COLING-10.
    • (2010) Proc. of COLING-10
    • Sun, A.1    Grishman, R.2
  • 14
    • 84859074855 scopus 로고    scopus 로고
    • Semi-supervised Relation Extraction with Large-scale Word Clustering
    • Ang Sun and Ralph Grishman. 2011. Semi-supervised Relation Extraction with Large-scale Word Clustering. In Proc. of ACL-11.
    • (2011) Proc. of ACL-11
    • Sun, A.1    Grishman, R.2
  • 15
    • 74549213186 scopus 로고    scopus 로고
    • Helping Editors Choose Better Seed Sets for Entity Set Expansion
    • Vishnu Vyas, Patrick Pantel, Eric Crestan. 2009. Helping Editors Choose Better Seed Sets for Entity Set Expansion. In Proceedings of CIKM-09.
    • (2009) Proceedings of CIKM-09
    • Vyas, V.1    Pantel, P.2    Crestan, E.3
  • 17
    • 84860532294 scopus 로고    scopus 로고
    • A composite kernel to extract relations between entities with both flat and structured features
    • Min Zhang, Jie Zhang, Jian Su, and GuoDong Zhou. 2006. A composite kernel to extract relations between entities with both flat and structured features. In Proceedings of COLING-ACL-06.
    • (2006) Proceedings of COLING-ACL-06
    • Zhang, M.1    Zhang, J.2    Su, J.3    Zhou, G.4
  • 18
    • 18744392555 scopus 로고    scopus 로고
    • Weakly supervised relation classification for information extraction
    • Zhu Zhang. (2004). Weakly supervised relation classification for information extraction. In Proc. of CIKM'2004.
    • (2004) Proc. of CIKM'2004
    • Zhang, Z.1
  • 19
    • 84859917836 scopus 로고    scopus 로고
    • Extracting relations with integrated information using kernel methods
    • Shubin Zhao and Ralph Grishman. 2005. Extracting relations with integrated information using kernel methods. In Proceedings of ACL.
    • (2005) Proceedings of ACL
    • Zhao, S.1    Grishman, R.2
  • 21
    • 80053360686 scopus 로고    scopus 로고
    • Tree kernel-based relation extraction with context-sensitive structured parse tree information
    • Guodong Zhou, Min Zhang, DongHong Ji, and QiaoMing Zhu. 2007. Tree kernel-based relation extraction with context-sensitive structured parse tree information. In Proceedings of EMNLPCoNLL-07.
    • (2007) Proceedings of EMNLPCoNLL-07
    • Zhou, G.1    Zhang, M.2    Ji, D.3    Zhu, Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.