메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1859-1863

Semantic context learning with large-scale weakly-labeled image set

Author keywords

image annotation; large scale; semantic context; weakly labeled

Indexed keywords

DATA CLOUDS; IMAGE ANNOTATION; IMAGE SETS; INTERNET USERS; LARGE SCALE; MANUAL ANNOTATION; MULTI-LABEL ANNOTATION; MULTIPLE LABELS; REAL APPLICATIONS; REAL-WORLD IMAGE; SCALABILITY ISSUE; SEMANTIC CONTEXT; SEMANTIC SPACE; SEMI-SUPERVISED; TAGGING SYSTEMS; VISUAL CONTEXT; WEAKLY LABELED; WEB IMAGES;

EID: 84871091658     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2396761.2398532     Document Type: Conference Paper
Times cited : (4)

References (23)
  • 1
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR, 7:2399-2434, 2006.
    • (2006) JMLR , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 2
    • 77956007413 scopus 로고    scopus 로고
    • Tag-based web photo retrieval improved by batch mode re-tagging
    • L. Chen, D. Xu, I. W. Tsang, and J. Luo. Tag-based web photo retrieval improved by batch mode re-tagging. In CVPR, 2010.
    • (2010) CVPR
    • Chen, L.1    Xu, D.2    Tsang, I.W.3    Luo, J.4
  • 3
    • 84455201572 scopus 로고    scopus 로고
    • Efficient large-scale image annotation by probabilistic collaborative multi-label propagation
    • X. Chen, Y. Mu, S. Yan, and T.-S. Chua. Efficient large-scale image annotation by probabilistic collaborative multi-label propagation. In ACM MM, 2010.
    • (2010) ACM MM
    • Chen, X.1    Mu, Y.2    Yan, S.3    Chua, T.-S.4
  • 4
    • 77956006912 scopus 로고    scopus 로고
    • Exploiting hierarchical context on a large database of object categories
    • M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky. Exploiting hierarchical context on a large database of object categories. In CVPR, 2010.
    • (2010) CVPR
    • Choi, M.J.1    Lim, J.J.2    Torralba, A.3    Willsky, A.S.4
  • 5
    • 74049158146 scopus 로고    scopus 로고
    • Nus-wide: A real-world web image database from national university of singapore
    • T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng. Nus-wide: A real-world web image database from national university of singapore. In CIVR, 2009.
    • (2009) CIVR
    • Chua, T.-S.1    Tang, J.2    Hong, R.3    Li, H.4    Luo, Z.5    Zheng, Y.-T.6
  • 6
    • 77956002586 scopus 로고    scopus 로고
    • Harvesting large-scale weakly-tagged image databases from the web
    • J. Fan, Y. Shen, N. Zhou, and Y. Gao. Harvesting large-scale weakly-tagged image databases from the web. In CVPR, 2010.
    • (2010) CVPR
    • Fan, J.1    Shen, Y.2    Zhou, N.3    Gao, Y.4
  • 7
    • 5044225521 scopus 로고    scopus 로고
    • Multiple bernoulli relevance models for image and video annotation
    • S. L. Feng, R. Manmatha, and V. Lavrenko. Multiple bernoulli relevance models for image and video annotation. In CVPR, 2004.
    • (2004) CVPR
    • Feng, S.L.1    Manmatha, R.2    Lavrenko, V.3
  • 8
    • 77955999022 scopus 로고    scopus 로고
    • Semi-supervised learning in gigantic image collections
    • R. Fergus, Y. Weiss, and A. Torralba. Semi-supervised learning in gigantic image collections. In NIPS, 2010.
    • (2010) NIPS
    • Fergus, R.1    Weiss, Y.2    Torralba, A.3
  • 9
    • 77953202699 scopus 로고    scopus 로고
    • Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation
    • M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In ICCV, 2009.
    • (2009) ICCV
    • Guillaumin, M.1    Mensink, T.2    Verbeek, J.3    Schmid, C.4
  • 11
    • 79951514444 scopus 로고    scopus 로고
    • Unified tag analysis with multi-edge graph
    • D. Liu, S. Yan, Y. Rui, and H.-J. Zhang. Unified tag analysis with multi-edge graph. In ACM MM, 2010.
    • (2010) ACM MM
    • Liu, D.1    Yan, S.2    Rui, Y.3    Zhang, H.-J.4
  • 12
    • 77956555216 scopus 로고    scopus 로고
    • Large graph construction for scalable semi-supervised learning
    • W. Liu, J. He, and S.-F. Chang. Large graph construction for scalable semi-supervised learning. In ICML, 2010.
    • (2010) ICML
    • Liu, W.1    He, J.2    Chang, S.-F.3
  • 13
    • 70449580491 scopus 로고    scopus 로고
    • A new baseline for image annotation
    • A. Makadia, V. Pavlovic, and S. Kumar. A new baseline for image annotation. In ECCV, 2008.
    • (2008) ECCV
    • Makadia, A.1    Pavlovic, V.2    Kumar, S.3
  • 14
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, vol. 290, 2000.
    • (2000) Science , vol.290
    • Roweis, S.T.1    Saul, L.K.2
  • 15
    • 78650967013 scopus 로고    scopus 로고
    • Bipartite graph reinforcement model for web image annotation
    • X. Rui, M. Li, Z. Li, W.-Y. Ma, and N. Yu. Bipartite graph reinforcement model for web image annotation. In ACM MM, 2007.
    • (2007) ACM MM
    • Rui, X.1    Li, M.2    Li, Z.3    Ma, W.-Y.4    Yu, N.5
  • 16
    • 77955885915 scopus 로고    scopus 로고
    • Inferring semantic concepts from community contributed images and noisy tags
    • J. Tang, S. Yan, R. Hong, G.-J. Qi, and T.-S. Chua. Inferring semantic concepts from community contributed images and noisy tags. In ACM MM, 2009.
    • (2009) ACM MM
    • Tang, J.1    Yan, S.2    Hong, R.3    Qi, G.-J.4    Chua, T.-S.5
  • 17
    • 34948858988 scopus 로고    scopus 로고
    • Content-based image annotation refinement
    • C. Wang, F. Jing, L. Zhang, and H.-J. Zhang. Content-based image annotation refinement. In CVPR, 2007.
    • (2007) CVPR
    • Wang, C.1    Jing, F.2    Zhang, L.3    Zhang, H.-J.4
  • 19
    • 51949083216 scopus 로고    scopus 로고
    • Joint multi-label multi-instance learning for image classification
    • Z.-J. Zha, X.-S. Hua, T. Mei, J. Wang, G.-J. Qi, and Z. Wang. Joint multi-label multi-instance learning for image classification. In CVPR, 2008.
    • (2008) CVPR
    • Zha, Z.-J.1    Hua, X.-S.2    Mei, T.3    Wang, J.4    Qi, G.-J.5    Wang, Z.6
  • 21
    • 84871100131 scopus 로고    scopus 로고
    • Automatic image annotation with weakly labeled dataset
    • W. Zhang, Y. Lu, X. Xue, and J. Fan. Automatic image annotation with weakly labeled dataset. In ACM MM, 2011.
    • (2011) ACM MM
    • Zhang, W.1    Lu, Y.2    Xue, X.3    Fan, J.4
  • 22
    • 79951508949 scopus 로고    scopus 로고
    • Image tag refinement towards low-rank, content-tag prior and error sparsity
    • G. Zhu, S. Yan, and Y. Ma. Image tag refinement towards low-rank, content-tag prior and error sparsity. In ACM MM, 2010.
    • (2010) ACM MM
    • Zhu, G.1    Yan, S.2    Ma, Y.3
  • 23
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In ICML, 2003.
    • (2003) ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.