메뉴 건너뛰기




Volumn , Issue , 2012, Pages 595-604

Large-scale item categorization for e-commerce

Author keywords

classification; text

Indexed keywords

CLASSIFICATION ALGORITHM; E-COMMERCE SITES; EXPERIMENTAL EVALUATION; FEATURE SPACE; GRAPH ALGORITHMS; HIERARCHICAL APPROACH; ILLUSTRATIVE EXAMPLES; INDUSTRIAL SETTINGS; TEXT; TEXT CATEGORIZATION; TRAINING DATA;

EID: 84871042856     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2396761.2396838     Document Type: Conference Paper
Times cited : (49)

References (29)
  • 1
    • 0028461417 scopus 로고
    • Automated learning of decision rules for text categorization
    • C. Apté, F. Damerau, and S. M. Weiss. Automated learning of decision rules for text categorization. ACM Trans. Inf. Syst., 12:233-251, 1994.
    • (1994) ACM Trans. Inf. Syst. , vol.12 , pp. 233-251
    • Apté, C.1    Damerau, F.2    Weiss, S.M.3
  • 5
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. Artificial Intelligence Research, 2:263-286, 1995.
    • (1995) Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 9
    • 0007015178 scopus 로고
    • Technical Report UCB/CSD-84-171, EECS Department, University of California, Berkeley
    • A. V. Goldberg. Finding a maximum density subgraph. Technical Report UCB/CSD-84-171, EECS Department, University of California, Berkeley, 1984.
    • (1984) Finding A Maximum Density Subgraph
    • Goldberg, A.V.1
  • 10
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • T. Hastie and R. Tibshirani. Classification by pairwise coupling. Annals of Statistics, 26:451-471, 1998.
    • (1998) Annals of Statistics , vol.26 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 11
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In Proc. of the 10th European Conference on Machine Learning(ECML), pages 137-142, 1998.
    • (1998) Proc. of the 10th European Conference on Machine Learning(ECML) , pp. 137-142
    • Joachims, T.1
  • 13
    • 0036080105 scopus 로고    scopus 로고
    • Hierarchical fusion of multiple classifiers for hyperspectral data analysis
    • S. Kumar, J. Ghosh, and M. M. Crawford. Hierarchical fusion of multiple classifiers for hyperspectral data analysis. Pattern Analysis and Applications, 5:210-220, 2002.
    • (2002) Pattern Analysis and Applications , vol.5 , pp. 210-220
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 17
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • MIT Press
    • J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In ADVANCES IN LARGE MARGIN CLASSIFIERS, pages 61-74. MIT Press, 1999.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 18
    • 56749117943 scopus 로고    scopus 로고
    • Defense of one-vs-all classification
    • R. Rifkin and A. Klautau. In defense of one-vs-all classification. Machine Learning Research, 5:101-141, 2004.
    • (2004) Machine Learning Research , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 19
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys (CSUR), 34:1-47, 2002.
    • (2002) ACM Computing Surveys (CSUR) , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 22
    • 78651375098 scopus 로고    scopus 로고
    • A survey of hierarchical classification across different application domains
    • C. N. Silla and A. A. Freitas. A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 22:31-72, 2011.
    • (2011) Data Mining and Knowledge Discovery , vol.22 , pp. 31-72
    • Silla, C.N.1    Freitas, A.A.2
  • 24
    • 0001790593 scopus 로고
    • Depth-first search and linear graph algorithms
    • R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146-160, 1972.
    • (1972) SIAM Journal on Computing , vol.1 , Issue.2 , pp. 146-160
    • Tarjan, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.