메뉴 건너뛰기




Volumn 5, Issue 1, 2012, Pages 29-37

Spatial clusters of county-level diagnosed diabetes and associated risk factors in the United States

Author keywords

County level; Diabetes cluster; Diabetes risk factors; Geographic cluster; Socioeconomic factors; Spatial analysis

Indexed keywords

ADULT; AGE DISTRIBUTION; AMERICAN INDIAN; ARTICLE; CLUSTER ANALYSIS; DIABETES MELLITUS; DISEASE ASSOCIATION; ETHNIC DIFFERENCE; FEMALE; GEOGRAPHIC DISTRIBUTION; HISPANIC; HUMAN; IMMOBILIZATION; MAJOR CLINICAL STUDY; MALE; NEGRO; OBESITY; PHYSICAL ACTIVITY; POVERTY; PREVALENCE; PRIORITY JOURNAL; RISK FACTOR; SOCIAL STATUS; SOCIOECONOMICS; UNITED STATES;

EID: 84871015407     PISSN: None     EISSN: 18765246     Source Type: Journal    
DOI: 10.2174/1876524601205010029     Document Type: Article
Times cited : (26)

References (38)
  • 1
    • 79960614571 scopus 로고    scopus 로고
    • Centers for Disease Control and Prevention, Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. (Accessed April 5,). Available at
    • Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. (Accessed April 5, 2011). Available at: http://www.cdc.gov/diabetes/pubs/factsheet11.htm
    • (2011) National diabetes fact sheet: National estimates and general information on diabetes and prediabetes in the United States, 2011
  • 2
    • 84859615974 scopus 로고    scopus 로고
    • Centers for Disease Control and Prevention, Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. (Accessed September 21,). Available at
    • Centers for Disease Control and Prevention. Crude and Age-Adjusted Percentage of Civilian, Noninstitutionalized Population with Diagnosed Diabetes, United States, 1980-2009. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. (Accessed September 21, 2011). Available at: www.cdc.gov/diabetes/statistics/prev/national/figage. htm.
    • (2011) Crude and Age-Adjusted Percentage of Civilian, Noninstitutionalized Population with Diagnosed Diabetes, United States, 1980-2009
  • 3
    • 43449108812 scopus 로고    scopus 로고
    • Economic costs of diabetes in the U.S. in 2007
    • American Diabetes Association
    • American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care 2008; 31: 596-15.
    • (2008) Diabetes Care , vol.31 , pp. 596-615
  • 6
    • 82855179422 scopus 로고    scopus 로고
    • Selected risk factors' contribution to state-level incidence of diagnosed diabetes, 2005-2007
    • Barker L, Tierney E, Lanza A, Kirtland K. Selected risk factors' contribution to state-level incidence of diagnosed diabetes, 2005-2007. Open Diabetes J 2011; 4(1): 123-30.
    • (2011) Open Diabetes J , vol.4 , Issue.1 , pp. 123-130
    • Barker, L.1    Tierney, E.2    Lanza, A.3    Kirtland, K.4
  • 7
    • 70749119454 scopus 로고    scopus 로고
    • Estimated countylevel prevalence of diabetes and obesity-United States, 2007
    • Gregg EW, Kirtland KA, Cadwell BL, et al. Estimated countylevel prevalence of diabetes and obesity-United States, 2007. Morb Mortal Wkly Rep 2009; 58(45): 1259-63.
    • (2009) Morb Mortal Wkly Rep , vol.58 , Issue.45 , pp. 1259-1263
    • Gregg, E.W.1    Kirtland, K.A.2    Cadwell, B.L.3
  • 8
    • 77649182255 scopus 로고    scopus 로고
    • Evaluating geographic variation in type 1 and type 2 diabetes mellitus incidence in youth in four US regions
    • Liese AD, Lawson A, Song HR, et al. Evaluating geographic variation in type 1 and type 2 diabetes mellitus incidence in youth in four US regions. Health Place 2010; 16(3): 547-56.
    • (2010) Health Place , vol.16 , Issue.3 , pp. 547-556
    • Liese, A.D.1    Lawson, A.2    Song, H.R.3
  • 9
    • 77954772173 scopus 로고    scopus 로고
    • The geography of diabetes in London, Canada. The need for local level policy for prevention and management
    • Tompkins JW, Luginaah IN, Booth GL, Harris SB. The geography of diabetes in London, Canada. The need for local level policy for prevention and management. Int J Environ Res Public Health 2010; 7(5): 2407-22.
    • (2010) Int J Environ Res Public Health , vol.7 , Issue.5 , pp. 2407-2422
    • Tompkins, J.W.1    Luginaah, I.N.2    Booth, G.L.3    Harris, S.B.4
  • 10
    • 77958154482 scopus 로고    scopus 로고
    • Bayesian Small Area Estimates of Diabetes Prevalence by U.S. County, 2005
    • Cadwell BL, Thompson TJ, Boyle JP, Barker LE. Bayesian Small Area Estimates of Diabetes Prevalence by U.S. County, 2005. J Data Sci 2010; 8: 173-88.
    • (2010) J Data Sci , vol.8 , pp. 173-188
    • Cadwell, B.L.1    Thompson, T.J.2    Boyle, J.P.3    Barker, L.E.4
  • 12
    • 34247580207 scopus 로고    scopus 로고
    • Using exploratory spatial data analysis to leverage social indicator databases. The discovery of interesting patterns
    • Anselin L, Sridharan S, Gholston S. Using exploratory spatial data analysis to leverage social indicator databases. The discovery of interesting patterns. Soc Indicators Res 2007; 82(2): 287-09.
    • (2007) Soc Indicators Res , vol.82 , Issue.2 , pp. 287-309
    • Anselin, L.1    Sridharan, S.2    Gholston, S.3
  • 13
    • 33645929706 scopus 로고    scopus 로고
    • GeoDa: An introduction to spatial data analysis
    • Anselin L, Syabri I, Kho Y. GeoDa: An introduction to spatial data analysis. Geogr Anal 2006; 38(1): 5-22.
    • (2006) Geogr Anal , vol.38 , Issue.1 , pp. 5-22
    • Anselin, L.1    Syabri, I.2    Kho, Y.3
  • 14
    • 75249107581 scopus 로고    scopus 로고
    • Geostatistical analysis of county-level lung cancer mortality rates in the Southeastern United States
    • Goovaerts P. Geostatistical analysis of county-level lung cancer mortality rates in the Southeastern United States. Geogr Anal 2010; 42(1): 32-52.
    • (2010) Geogr Anal , vol.42 , Issue.1 , pp. 32-52
    • Goovaerts, P.1
  • 15
    • 49949114949 scopus 로고    scopus 로고
    • Demographic, seasonal, and spatial differences in acute myocardial infarction admissions to hospital in Melbourne Australia
    • Loughnan ME, Nicholls N, Tapper NJ. Demographic, seasonal, and spatial differences in acute myocardial infarction admissions to hospital in Melbourne Australia. Int J Health Geogr 2008; 7: 42.
    • (2008) Int J Health Geogr , vol.7 , pp. 42
    • Loughnan, M.E.1    Nicholls, N.2    Tapper, N.J.3
  • 16
    • 77955297201 scopus 로고    scopus 로고
    • Spatial patterns of obesity and associated risk factors in the conterminous U. S
    • Michimi A, Wimberly MC. Spatial patterns of obesity and associated risk factors in the conterminous U.S. Am J Prev Med 2010; 39: 1-12.
    • (2010) Am J Prev Med , vol.39 , pp. 1-12
    • Michimi, A.1    Wimberly, M.C.2
  • 17
    • 62549159166 scopus 로고    scopus 로고
    • Monitoring county-level chlamydia incidence in Texas, 2004-2005. application of empirical Bayesian smoothing and Exploratory Spatial Data Analysis (ESDA) methods
    • Owusu-Edusei K Jr, Owens CJ. Monitoring county-level chlamydia incidence in Texas, 2004-2005. application of empirical Bayesian smoothing and Exploratory Spatial Data Analysis (ESDA) methods. Int J Health Geogr 2009; 8:12.
    • (2009) Int J Health Geogr , vol.8 , pp. 12
    • Owusu-Edusei Jr., K.1    Owens, C.J.2
  • 18
    • 72449130954 scopus 로고    scopus 로고
    • Are obesity and physical activity clustered? A spatial analysis linked to residential density
    • Schuurman N, Peters PA, Oliver LN. Are obesity and physical activity clustered? A spatial analysis linked to residential density. Obesity (Silver Spring) 2009; 17(12): 2202-09.
    • (2009) Obesity (Silver Spring) , vol.17 , Issue.12 , pp. 2202-2209
    • Schuurman, N.1    Peters, P.A.2    Oliver, L.N.3
  • 19
    • 77957657518 scopus 로고    scopus 로고
    • Elucidating the changing socio-spatial dynamics of neighborhood effects on adult obesity risk in Taiwan from 2001 to 2005
    • Chen DR, Wen TH. Elucidating the changing socio-spatial dynamics of neighborhood effects on adult obesity risk in Taiwan from 2001 to 2005. Health Place 2010; 16(6): 1248-58.
    • (2010) Health Place , vol.16 , Issue.6 , pp. 1248-1258
    • Chen, D.R.1    Wen, T.H.2
  • 20
    • 0038208037 scopus 로고    scopus 로고
    • Geographic analysis of diabetes prevalence in an urban area
    • Green C, Hoppa RD, Young TK, Blanchard JF. Geographic analysis of diabetes prevalence in an urban area. Soc Sci Med 2003; 57(3): 551-60.
    • (2003) Soc Sci Med , vol.57 , Issue.3 , pp. 551-560
    • Green, C.1    Hoppa, R.D.2    Young, T.K.3    Blanchard, J.F.4
  • 22
    • 69249230796 scopus 로고    scopus 로고
    • Using population attributable risk to understand geographic disease clusters
    • Yiannakoulias N. Using population attributable risk to understand geographic disease clusters. Health Place 2009; 15(4): 1142-48.
    • (2009) Health Place , vol.15 , Issue.4 , pp. 1142-1148
    • Yiannakoulias, N.1
  • 23
    • 0142050424 scopus 로고    scopus 로고
    • US Census Bureau, Internet researched data: December (Accessed August 11, 2010). Available at
    • US Census Bureau. Small Area Income and Poverty Estimates. Internet researched data: December 2008. (Accessed August 11, 2010). Available at: http://www.census.gov/did/www/saipe/data/statecounty/data/2007.html.
    • (2008) Small Area Income and Poverty Estimates
  • 24
    • 79955766057 scopus 로고    scopus 로고
    • Inter-university Consortium for Political and Social Research, ICPSR20660-v2. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2008-01-24. doi:10.3886/ICPSR20660
    • Inter-university Consortium for Political and Social Research. County Characteristics, 2000-2007 [United States] [Computer file]. ICPSR20660-v2. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2008-01-24. doi:10.3886/ICPSR20660. 2008.
    • (2008) County Characteristics, 2000-2007 [United States] [Computer file]
  • 25
    • 82755177267 scopus 로고    scopus 로고
    • Population estimates. Releaseddate: September (Accessed June 26, 2012). Available at
    • U.S. Census Bureau. Population estimates. Releaseddate: September 2011. (Accessed June 26, 2012). Available at: www.census.gov/popest/data/intercensal/county/files/CO-EST00IN T-AGESEX-5YR.csv.
    • (2011) U.S. Census Bureau
  • 26
    • 84885215054 scopus 로고    scopus 로고
    • County typology codes. Updated date: March 26, (Accessed August 11, 2010). Available at
    • U.S. Department of Agriculture. County typology codes. Updated date: March 26, 2009. (Accessed August 11, 2010). Available at: www.ers.usda.gov/Data/TypologyCodes/.
    • (2009) U.S. Department of Agriculture
  • 28
    • 0029507498 scopus 로고
    • Local Indicators of Spatial Association-LISA
    • Anselin L. Local Indicators of Spatial Association-LISA. Geogr Anal 1995; 27(2): 93-115.
    • (1995) Geogr Anal , vol.27 , Issue.2 , pp. 93-115
    • Anselin, L.1
  • 29
    • 77249179190 scopus 로고    scopus 로고
    • Socioeconomic status and incidence of type 2 diabetes: Results from the Black Women's Health Study
    • Krishnan S, Cozier YC, Rosenberg L, Palmer JR. Socioeconomic status and incidence of type 2 diabetes: results from the Black Women's Health Study. Am J Epidemiol 2010; 171: 564-70.
    • (2010) Am J Epidemiol , vol.171 , pp. 564-570
    • Krishnan, S.1    Cozier, Y.C.2    Rosenberg, L.3    Palmer, J.R.4
  • 30
    • 0035164887 scopus 로고    scopus 로고
    • Socioeconomic status and type 2 diabetes in African American and non-Hispanic white women and men: Evidence from the Third National Health and Nutrition Examination Survey
    • Robbins JM, Vaccarino V, Zhang H, Kasl SV. Socioeconomic status and type 2 diabetes in African American and non-Hispanic white women and men: evidence from the Third National Health and Nutrition Examination Survey. Am J Public Health 2001; 91(1): 76-83.
    • (2001) Am J Public Health , vol.91 , Issue.1 , pp. 76-83
    • Robbins, J.M.1    Vaccarino, V.2    Zhang, H.3    Kasl, S.V.4
  • 31
    • 79952111331 scopus 로고    scopus 로고
    • Residence in a distressed county in Appalachia as a risk factor for diabetes, Behavioral Risk Factor Surveillance System, 2006-2007
    • Barker L, Crespo R, Gerzoff RB, Denham S, Shrewsberry M, Cornelius-Averhart D. Residence in a distressed county in Appalachia as a risk factor for diabetes, Behavioral Risk Factor Surveillance System, 2006-2007. Prev Chronic Dis 2010; 7(5): A104.
    • (2010) Prev Chronic Dis , vol.7 , Issue.5
    • Barker, L.1    Crespo, R.2    Gerzoff, R.B.3    Denham, S.4    Shrewsberry, M.5    Cornelius-Averhart, D.6
  • 32
    • 73349083405 scopus 로고    scopus 로고
    • Disparities in chronic disease among Canada's low-income populations
    • Fang R, Kmetic A, Millar J, Drasic L. Disparities in chronic disease among Canada's low-income populations. Prev Chronic Dis 2009; 6(4): A115.
    • (2009) Prev Chronic Dis , vol.6 , Issue.4
    • Fang, R.1    Kmetic, A.2    Millar, J.3    Drasic, L.4
  • 33
    • 79952086745 scopus 로고    scopus 로고
    • Diabetes and the socioeconomic and built environment: Geovisualization of disease prevalence and potential contextual associations using ring maps
    • Lopez-De Fede A, Stewart JE, Battersby SE, Remington KC, Hardin JW, Mayfield-Smith K. Diabetes and the socioeconomic and built environment: geovisualization of disease prevalence and potential contextual associations using ring maps. Int J Health Geogr 2011; 10: 18.
    • (2011) Int J Health Geogr , vol.10 , pp. 18
    • Lopez-de Fede, A.1    Stewart, J.E.2    Battersby, S.E.3    Remington, K.C.4    Hardin, J.W.5    Mayfield-Smith, K.6
  • 34
    • 77958150699 scopus 로고    scopus 로고
    • Estimating small area diabetes prevalence in the US using the behavioral risk factor surveillance system
    • Congdon P, Lloyd P. Estimating small area diabetes prevalence in the US using the behavioral risk factor surveillance system. J Data Sci 2010; 8: 235-52.
    • (2010) J Data Sci , vol.8 , pp. 235-252
    • Congdon, P.1    Lloyd, P.2
  • 35
    • 77953924513 scopus 로고    scopus 로고
    • Environmental and socio-economic factors as contributors to racial disparities in diabetes prevalence
    • LaVeist TA, Thorpe RJ, Galarraga JE, Bower KM, Gary-Webb TL. Environmental and socio-economic factors as contributors to racial disparities in diabetes prevalence. J Gen Intern Med 2009; 24(10): 1144-48.
    • (2009) J Gen Intern Med , vol.24 , Issue.10 , pp. 1144-1148
    • LaVeist, T.A.1    Thorpe, R.J.2    Galarraga, J.E.3    Bower, K.M.4    Gary-Webb, T.L.5
  • 36
    • 20644438435 scopus 로고    scopus 로고
    • Geographic variation in the prevalence of obesity, diabetes, and obesity-related behaviors
    • Ford ES, Mokdad AH, Giles WH, Galuska DA, Serdula MK. Geographic variation in the prevalence of obesity, diabetes, and obesity-related behaviors. Obes Res 2005; 13(1): 118-22.
    • (2005) Obes Res , vol.13 , Issue.1 , pp. 118-122
    • Ford, E.S.1    Mokdad, A.H.2    Giles, W.H.3    Galuska, D.A.4    Serdula, M.K.5
  • 37
    • 54049148081 scopus 로고    scopus 로고
    • Centers for Disease Control and Prevention, Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. (Accessed April 5,). Available at
    • Centers for Disease Control and Prevention. National diabetes fact sheet: general information and national estimates on diabetes in the United States, 2005. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. (Accessed April 5, 2011). Available at: http://www.cdc.gov/diabe tes/pubs/factsheet05.htm.
    • (2011) National diabetes fact sheet: General information and national estimates on diabetes in the United States, 2005
  • 38
    • 0035711683 scopus 로고    scopus 로고
    • Ecologic versus individual-level sources of bias in ecologic estimates of contextual health effects
    • Greenland S. Ecologic versus individual-level sources of bias in ecologic estimates of contextual health effects. Int J Epidemiol 2001; 30(6): 1343-50.
    • (2001) Int J Epidemiol , vol.30 , Issue.6 , pp. 1343-1350
    • Greenland, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.