메뉴 건너뛰기




Volumn 5, Issue 3, 2009, Pages

Relational parametricity for computational effects

Author keywords

Computational effects; Intuitionistic set theory; Monads; Relational parametricity

Indexed keywords

COMPUTER SCIENCE; COMPUTERS;

EID: 84871009624     PISSN: None     EISSN: 18605974     Source Type: Journal    
DOI: 10.2168/LMCS-5(3:7)2009     Document Type: Article
Times cited : (8)

References (41)
  • 3
    • 18944405475 scopus 로고    scopus 로고
    • Operational properties of Lily, a polymorphic linear lambda calculus with recursion
    • G. Bierman, A. Pitts, and C. Russo. Operational properties of Lily, a polymorphic linear lambda calculus with recursion. ENTCS, 41: 70-88, 2000.
    • (2000) ENTCS , vol.41 , pp. 70-88
    • Bierman, G.1    Pitts, A.2    Russo, C.3
  • 5
    • 0004195132 scopus 로고    scopus 로고
    • PhD thesis, School of Computer Science, CMU
    • A. Filinski. Controlling Effects. PhD thesis, School of Computer Science, CMU, 1996.
    • (1996) Controlling Effects.
    • Filinski, A.1
  • 9
    • 38149123958 scopus 로고    scopus 로고
    • Relational parametricity and control
    • Special issue for selected papers from LICS 2005
    • M. Hasegawa. Relational parametricity and control. Logical Methods in Computer Science, 2, 2006. Special issue for selected papers from LICS 2005.
    • (2006) Logical Methods in Computer Science , vol.2
    • Hasegawa, M.1
  • 12
    • 0008881912 scopus 로고
    • The discrete objects in the effective topos
    • J.M.E. Hyland, E. Robinson, and G. Rosolini. The discrete objects in the effective topos. Proc. LMS., 3(60), 1990.
    • (1990) Proc. LMS. , vol.3 , Issue.60
    • Hyland, J.M.E.1    Robinson, E.2    Rosolini, G.3
  • 14
    • 26944501932 scopus 로고    scopus 로고
    • A semantic formulation of ⊤⊤-lifting and logical predicates for computational metalanguage
    • Springer LNCS 3634
    • S. Katsumata. A semantic formulation of ⊤⊤-lifting and logical predicates for computational metalanguage. In Computer Science Logic, Springer LNCS 3634, 2005.
    • (2005) Computer Science Logic
    • Katsumata, S.1
  • 16
    • 27844452935 scopus 로고    scopus 로고
    • Adjunction models for call-by-push-value with stacks
    • P.B. Levy. Adjunction models for call-by-push-value with stacks. Theory and Applications of Categories, 14: 75-110, 2005.
    • (2005) Theory and Applications of Categories , vol.14 , pp. 75-110
    • Levy, P.B.1
  • 19
    • 44649153132 scopus 로고    scopus 로고
    • Relational Parametricity for Computational Effects
    • R.E. Møgelberg and A. Simpson. Relational Parametricity for Computational Effects. In Proc. 22nd LICS Symposium, pages 346-355, 2007.
    • (2007) Proc. 22nd LICS Symposium , pp. 346-355
    • Møgelberg, R.E.1    Simpson, A.2
  • 20
    • 33847675878 scopus 로고    scopus 로고
    • Relational Parametricity for Control Considered as a Computational Effect
    • R.E. Møgelberg and A. Simpson. Relational Parametricity for Control Considered as a Computational Effect. In Proc. MFPS XXIII, ENTCS 173: 295-312, 2007.
    • (2007) Proc. MFPS XXIII, ENTCS , vol.173 , pp. 295-312
    • Møgelberg, R.E.1    Simpson, A.2
  • 22
    • 0024927385 scopus 로고
    • Computational lambda-calculus and monads
    • E. Moggi. Computational lambda-calculus and monads. In Proc. 4th LICS Symposium, pages 14-23, 1989.
    • (1989) Proc. 4th LICS Symposium , pp. 14-23
    • Moggi, E.1
  • 23
    • 0026188821 scopus 로고
    • Notions of computation and monads
    • E. Moggi. Notions of computation and monads. Information and Computation, 93(1), 1991.
    • (1991) Information and Computation , vol.93 , Issue.1
    • Moggi, E.1
  • 24
    • 0031316469 scopus 로고    scopus 로고
    • Strong normalization for second order classical natural deduction
    • M. Parigot. Strong normalization for second order classical natural deduction. J. Symb. Logic, 62: 1461-1479, 1997.
    • (1997) J. Symb. Logic , vol.62 , pp. 1461-1479
    • Parigot, M.1
  • 25
    • 85031934615 scopus 로고
    • Polymorphism is set theoretic, constructively
    • Springer LNCS 283
    • A.M. Pitts. Polymorphism is set theoretic, constructively. In Proc. CTCS, pages 12-39. Springer LNCS 283, 1987.
    • (1987) Proc. CTCS , pp. 12-39
    • Pitts, A.M.1
  • 26
    • 0024907568 scopus 로고
    • Non-trivial power types can’t be subtypes of polymorphic types
    • A.M. Pitts. Non-trivial power types can’t be subtypes of polymorphic types. In Proc. 4th LICS Symposium, pages 6-13, 1989.
    • (1989) Proc. 4th LICS Symposium , pp. 6-13
    • Pitts, A.M.1
  • 27
    • 0001233777 scopus 로고    scopus 로고
    • Parametric polymorphism and operational equivalence
    • A.M. Pitts. Parametric polymorphism and operational equivalence. Mathematical Structures in Computer Science, 10: 321-359, 2000.
    • (2000) Mathematical Structures in Computer Science , vol.10 , pp. 321-359
    • Pitts, A.M.1
  • 28
    • 0347873629 scopus 로고
    • Type theory and recursion (extended abstract)
    • G. Plotkin. Type theory and recursion (extended abstract). In Proc. 8th LICS Symposium, page 374, 1993.
    • (1993) Proc. 8th LICS Symposium , pp. 374
    • Plotkin, G.1
  • 29
    • 85028748723 scopus 로고
    • A logic for parametric polymorphism
    • Springer LNCS 664
    • G. Plotkin and M. Abadi. A logic for parametric polymorphism. Proc. TLCA, pp.361-375. Springer LNCS 664, 1993.
    • (1993) Proc. TLCA , pp. 361-375
    • Plotkin, G.1    Abadi, M.2
  • 31
    • 18944361993 scopus 로고    scopus 로고
    • Computational effects and operations: An overview
    • G. Plotkin and A.J. Power. Computational effects and operations: an overview. ENTCS, 73: 149-163, 2004.
    • (2004) ENTCS , vol.73 , pp. 149-163
    • Plotkin, G.1    Power, A.J.2
  • 32
    • 0020919435 scopus 로고
    • Types, abstraction and parametric polymorphism
    • N. Holland
    • J. Reynolds. Types, abstraction and parametric polymorphism. In Inf. Processing, pp.513-523. N. Holland, 1983.
    • (1983) Inf. Processing , pp. 513-523
    • Reynolds, J.1
  • 33
    • 84972537572 scopus 로고
    • Polymorphism is not set-theoretic
    • Springer LNCS 173
    • J. Reynolds. Polymorphism is not set-theoretic. In Semantics of Data Types. Springer LNCS 173, 1984.
    • (1984) Semantics of Data Types.
    • Reynolds, J.1
  • 37
    • 85018384546 scopus 로고    scopus 로고
    • Computational adequacy in an elementary topos.
    • Springer LNCS 1585
    • A. Simpson. Computational adequacy in an elementary topos. In Computer Science Logic, Springer LNCS 1585, pp. 232-242, 1999.
    • (1999) Computer Science Logic , pp. 232-242
    • Simpson, A.1
  • 38
    • 0032597536 scopus 로고    scopus 로고
    • Elementary axioms for categories of classes (extended abstract)
    • A. Simpson. Elementary axioms for categories of classes (extended abstract). In Proc. 14th LICS Symposium, pp. 77-85, 1999.
    • (1999) Proc. 14th LICS Symposium , pp. 77-85
    • Simpson, A.1
  • 39
    • 15344349268 scopus 로고    scopus 로고
    • Computational adequacy for recursive types in models of intuitionistic set theory
    • A. Simpson. Computational adequacy for recursive types in models of intuitionistic set theory. Annals of Pure and Applied Logic, 130: 207-275, 2004.
    • (2004) Annals of Pure and Applied Logic , vol.130 , pp. 207-275
    • Simpson, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.