메뉴 건너뛰기




Volumn 24, Issue 12, 2012, Pages 3317-3339

A common network architecture efficiently implements a variety of sparsity-based inference problems

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANIMAL; ARTICLE; ARTIFICIAL INTELLIGENCE; COMPUTER SIMULATION; HUMAN; PHYSIOLOGY; SOMATOSENSORY CORTEX;

EID: 84871006492     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00372     Document Type: Article
Times cited : (23)

References (50)
  • 3
    • 0042575594 scopus 로고    scopus 로고
    • Bayesian integration of visual and auditory signals for spatial localization
    • Battaglia, P., Jacobs, R.,& Aslin, R. (2003). Bayesian integration of visual and auditory signals for spatial localization. JOSA A, 20, 1391-1397.
    • (2003) JOSA A , vol.20 , pp. 1391-1397
    • Battaglia, P.1    Jacobs, R.2    Aslin, R.3
  • 4
    • 0000235696 scopus 로고
    • Internal representations for associative memory
    • Baum, E., Moody, J., & Wilczek, F. (1988). Internal representations for associative memory. Biological Cybernetics, 59, 217-228.
    • (1988) Biological Cybernetics , vol.59 , pp. 217-228
    • Baum, E.1    Moody, J.2    Wilczek, F.3
  • 6
    • 84861163812 scopus 로고    scopus 로고
    • Learning intermediate-level representations of form and motion from natural movies
    • Cadieu, C. F., & Olshausen, B. A. (2012). Learning intermediate-level representations of form and motion from natural movies. Neural Computation, 24, 827-866.
    • (2012) Neural Computation , vol.24 , pp. 827-866
    • Cadieu, C.F.1    Olshausen, B.A.2
  • 8
    • 84874201832 scopus 로고    scopus 로고
    • Short-term memory capacity in recurrent networks via compressed sensing
    • Cosyne Abstracts 2012, Salt Lake City, UT.
    • Charles, A. S., Yap, H. L., & Rozell, C. J. (2012). Short-term memory capacity in recurrent networks via compressed sensing. Cosyne Abstracts 2012, Salt Lake City, UT.
    • (2012)
    • Charles, A.S.1    Yap, H.L.2    Rozell, C.J.3
  • 10
    • 84861108659 scopus 로고    scopus 로고
    • Cortical surround interactions and perceptual salience via natural scene statistics
    • Coen-Cagli, R., Dayan, P., & Schwartz, O. (2012). Cortical surround interactions and perceptual salience via natural scene statistics. PLoS Comput. Biol., 8, e1002405.
    • (2012) PLoS Comput. Biol. , vol.8 , pp. 1002405
    • Coen-Cagli, R.1    Dayan, P.2    Schwartz, O.3
  • 11
    • 34347235785 scopus 로고    scopus 로고
    • Bayesian brain: Probabilistic approaches to neural coding
    • Cambridge, MA: MIT Press.
    • Doya, K. (2007). Bayesian brain: Probabilistic approaches to neural coding. Cambridge, MA: MIT Press.
    • (2007)
    • Doya, K.1
  • 12
    • 77952740831 scopus 로고    scopus 로고
    • On the role of sparse and redundant representations in image processing
    • Elad, M., Figueiredo, M., & Ma, Y. (2010). On the role of sparse and redundant representations in image processing. Proceedings of the IEEE, 98, 972-982.
    • (2010) Proceedings of the IEEE , vol.98 , pp. 972-982
    • Elad, M.1    Figueiredo, M.2    Ma, Y.3
  • 13
    • 35148813504 scopus 로고    scopus 로고
    • Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization
    • Elad, M., Matalon, B., & Zibulevsky, M. (2007). Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization. Applied and Computational Harmonic Analysis, 23, 346-367.
    • (2007) Applied and Computational Harmonic Analysis , vol.23 , pp. 346-367
    • Elad, M.1    Matalon, B.2    Zibulevsky, M.3
  • 14
  • 15
    • 0009935552 scopus 로고    scopus 로고
    • Comments on & quot;Wavelets in statistics: A review& quot; by A
    • Fan, J. (1997). Comments on & quot;Wavelets in statistics: A review& quot; by A. Antoniadis. Statistical Methods and Applications, 6, 131-138.
    • (1997) Antoniadis. Statistical Methods and Applications , vol.6 , pp. 131-138
    • Fan, J.1
  • 16
    • 0035442514 scopus 로고    scopus 로고
    • Wavelet-based image estimation: An empirical Bayes approach using Jeffrey's noninformative prior
    • Figueiredo, M.A.T., & Nowak, R. D. (2001). Wavelet-based image estimation: An empirical Bayes approach using Jeffrey's noninformative prior. IEEE Transactions on Image Processing, 10, 1322-1331.
    • (2001) IEEE Transactions on Image Processing , vol.10 , pp. 1322-1331
    • Figueiredo, M.A.T.1    Nowak, R.D.2
  • 17
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems
    • Figueiredo, M.A.T., Nowak, R. D., & Wright, S. J. (2007). Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 1, 586-597.
    • (2007) IEEE Journal of Selected Topics in Signal Processing , vol.1 , pp. 586-597
    • Figueiredo, M.A.T.1    Nowak, R.D.2    Wright, S.J.3
  • 18
    • 0032282297 scopus 로고    scopus 로고
    • Wavelet shrinkage denoising using the non-negative Garrote
    • Gao, H. (2001).Wavelet shrinkage denoising using the non-negative Garrote. Journal of Computational and Graphical Statistics, 7, 469-488.
    • (2001) Journal of Computational and Graphical Statistics , vol.7 , pp. 469-488
    • Gao, H.1
  • 19
    • 80055044705 scopus 로고    scopus 로고
    • Group sparse coding with a Laplacian scale mixture prior
    • J. Lafferty, C.K.J. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta (Eds.), Advances in neural information processing systems, Red Hook, NY: Curran.
    • Garrigues, P., & Olshausen, B. (2010). Group sparse coding with a Laplacian scale mixture prior. In J. Lafferty, C.K.J. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta (Eds.), Advances in neural information processing systems, 23 (pp. 1-9). Red Hook, NY: Curran.
    • (2010) , vol.23 , pp. 1-9
    • Garrigues, P.1    Olshausen, B.2
  • 20
    • 73549104549 scopus 로고    scopus 로고
    • Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation
    • Haider, B., Krause, M., Duque, A., Yu, Y., Touryan, J., Mazer, J., et al. (2010). Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron, 65, 107-121.
    • (2010) Neuron , vol.65 , pp. 107-121
    • Haider, B.1    Krause, M.2    Duque, A.3    Yu, Y.4    Touryan, J.5    Mazer, J.6
  • 21
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79, 2554-2558.
    • (1982) Proceedings of the National Academy of Sciences , vol.79 , pp. 2554-2558
    • Hopfield, J.1
  • 22
    • 84874201093 scopus 로고    scopus 로고
    • A network of spiking neurons for computing sparse representations in an energy efficientway
    • Hu, T., Genkin, A., & Chklovskii, D. B. (2012). A network of spiking neurons for computing sparse representations in an energy efficientway. Neural Computation, 24, 2852-2872.
    • (2012) Neural Computation , vol.24 , pp. 2852-2872
    • Hu, T.1    Genkin, A.2    Chklovskii, D.B.3
  • 23
    • 0001033261 scopus 로고
    • Robust regression: Asymptotics, conjectures and Monte Carlo
    • Huber, P. J. (1973). Robust regression: Asymptotics, conjectures and Monte Carlo. Annals of Statistics, 1, 799-821.
    • (1973) Annals of Statistics , vol.19 , pp. 799-821
    • Huber, P.J.1
  • 24
    • 0036709315 scopus 로고    scopus 로고
    • Testing the Bayesian model of perceived speed
    • Hürlimann, F., Kiper, D., & Carandini, M. (2002). Testing the Bayesian model of perceived speed. Vision Research, 42, 2253-2257.
    • (2002) Vision Research , vol.42 , pp. 2253-2257
    • Hürlimann, F.1    Kiper, D.2    Carandini, M.3
  • 25
    • 58149234993 scopus 로고    scopus 로고
    • Emergence of complex cell properties by learning to generalize in natural scenes
    • Karklin, Y., & Lewicki, M. (2008). Emergence of complex cell properties by learning to generalize in natural scenes. Nature, 457, 83-86.
    • (2008) Nature , vol.457 , pp. 83-86
    • Karklin, Y.1    Lewicki, M.2
  • 26
    • 84874196185 scopus 로고    scopus 로고
    • Improved sparse recovery thresholds with two-step reweighted ℓ1 minimization. arXiv:1004.0402.
    • Khajehnejad, M., Xu,W., Avestimehr, S., & Hassibi, B. (2010). Improved sparse recovery thresholds with two-step reweighted ℓ1 minimization. arXiv:1004.0402.
    • (2010)
    • Khajehnejad, M.1    Xu, W.2    Avestimehr, S.3    Hassibi, B.4
  • 27
    • 0037452922 scopus 로고    scopus 로고
    • The cost of cortical computation
    • Lennie, P. (2003). The cost of cortical computation. Current Biology, 13, 493-497.
    • (2003) Current Biology , vol.13 , pp. 493-497
    • Lennie, P.1
  • 28
    • 0142176890 scopus 로고    scopus 로고
    • Local strong homogeneity of a regularized estimator
    • Nikolova, M. (2000). Local strong homogeneity of a regularized estimator. SIAM Journal on Applied Mathematics, 61, 633-658.
    • (2000) SIAM Journal on Applied Mathematics , vol.61 , pp. 633-658
    • Nikolova, M.1
  • 29
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B., & Field, D. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.1    Field, D.2
  • 30
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research
    • Olshausen, B. A., & Field, D. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37, 3311-3325.
    • (1997) , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.2
  • 32
    • 1542680953 scopus 로고    scopus 로고
    • Sparse spike coding in an asynchronous feed-forward multi-layer neural network using matching pursuit
    • Perrinet, L., Samuelides, M., & Thorpe, S. (2004). Sparse spike coding in an asynchronous feed-forward multi-layer neural network using matching pursuit. Neurocomputing, 57, 125-134.
    • (2004) Neurocomputing , vol.57 , pp. 125-134
    • Perrinet, L.1    Samuelides, M.2    Thorpe, S.3
  • 33
    • 0033360288 scopus 로고    scopus 로고
    • Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects
    • Rao, R., & Ballard, D. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79-87.
    • (1999) Nature Neuroscience , vol.2 , pp. 79-87
    • Rao, R.1    Ballard, D.2
  • 34
    • 33847100046 scopus 로고    scopus 로고
    • A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields
    • Rehn, M., & Sommer, F. T. (2007). A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields. Journal of Computational Neuroscience, 22, 135-146.
    • (2007) Journal of Computational Neuroscience , vol.22 , pp. 135-146
    • Rehn, M.1    Sommer, F.T.2
  • 36
    • 51849128608 scopus 로고    scopus 로고
    • Sparse coding via thresholding and local competition in neural circuits
    • Rozell, C. J., Johnson,D.H., Baraniuk, R.G.,& Olshausen, B. A. (2010). Sparse coding via thresholding and local competition in neural circuits. Neural Computation, 20, 2526-2563.
    • (2010) Neural Computation , vol.20 , pp. 2526-2563
    • Rozell, C.J.1    Johnson, D.H.2    Baraniuk, R.G.3    Olshausen, B.A.4
  • 38
    • 0034939633 scopus 로고    scopus 로고
    • Natural signal statistics and sensory gain control
    • Schwartz, O., & Simoncelli, E. (2001). Natural signal statistics and sensory gain control. Nature Neuroscience, 4, 819-825.
    • (2001) Nature Neuroscience , vol.4 , pp. 819-825
    • Schwartz, O.1    Simoncelli, E.2
  • 39
    • 1842454989 scopus 로고    scopus 로고
    • The silent surround of V1 receptive fields: Theory and experiments
    • Seriès, P., Lorenceau, J., & Frégnac, Y. (2003). The silent surround of V1 receptive fields: Theory and experiments. Journal of Physiology-Paris, 97, 453-474.
    • (2003) Journal of Physiology-Paris , vol.97 , pp. 453-474
    • Seriès, P.1    Lorenceau, J.2    Frégnac, Y.3
  • 42
    • 79952707486 scopus 로고    scopus 로고
    • A single functional model accounts for the distinct properties of suppression in cortical area V1
    • Spratling, M. (2011). A single functional model accounts for the distinct properties of suppression in cortical area V1. Vision Research, 51, 563-576.
    • (2011) Vision Research , vol.51 , pp. 563-576
    • Spratling, M.1
  • 43
    • 0001300995 scopus 로고
    • Regularization of incorrectly posed problems
    • Tikhonov,A. (1963). Regularization of incorrectly posed problems. Soviet Math. Dokl, 4, 1624-1627.
    • (1963) Soviet Math. Dokl , vol.4 , pp. 1624-1627
    • Tikhonov, A.1
  • 44
    • 68849100982 scopus 로고    scopus 로고
    • Configurable analog signal processing
    • Twigg, C., & Hasler, P. (2009). Configurable analog signal processing. Digital Signal Processing, 19, 904-922.
    • (2009) Digital Signal Processing , vol.19 , pp. 904-922
    • Twigg, C.1    Hasler, P.2
  • 45
    • 0036546655 scopus 로고    scopus 로고
    • Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1
    • Vinje,W., & Gallant, J. (2002). Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1. Journal of Neuroscience, 22, 2904-2915.
    • (2002) Journal of Neuroscience , vol.22 , pp. 2904-2915
    • Vinje, W.1    Gallant, J.2
  • 50
    • 80055079190 scopus 로고    scopus 로고
    • A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields
    • Zylberberg, J., Murphy, J. T., & DeWeese, M. R. (2011). A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields. PLoS Comput. Biol., 7, e1002250.
    • (2011) PLoS Comput. Biol. , vol.7
    • Zylberberg, J.1    Murphy, J.T.2    DeWeese, M.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.