메뉴 건너뛰기




Volumn 31, Issue 30, 2012, Pages 4190-4206

Simulating from marginal structural models with time-dependent confounding

Author keywords

Causal inference; Inverse probability weights; Longitudinal data; Marginal structural models; Simulation; Survival analysis; Time dependent confounding

Indexed keywords

ALGORITHM; ARTICLE; CALIBRATION; CD4 LYMPHOCYTE COUNT; CONFOUNDING VARIABLE; HIGHLY ACTIVE ANTIRETROVIRAL THERAPY; HUMAN IMMUNODEFICIENCY VIRUS INFECTED PATIENT; LONGITUDINAL STUDY; MARGINAL STRUCTURAL VARIABLE; MONTE CARLO METHOD; PROBABILITY; REGRESSION ANALYSIS; SAMPLING ERROR; SIMULATION; STATISTICAL ANALYSIS; SURVIVAL;

EID: 84870954553     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.5472     Document Type: Article
Times cited : (33)

References (40)
  • 1
    • 0003135327 scopus 로고    scopus 로고
    • Marginal structural models versus structural nested models as tools for causal inference
    • In, Halloran E, Berry D (eds), Springer, New York, NY.
    • Robins J. 1999. Marginal structural models versus structural nested models as tools for causal inference, In Statistical Models in Epidemiology, the Environment and Clinical Trials, Halloran E, Berry D (eds), Springer, New York, NY.
    • (1999) Statistical Models in Epidemiology, the Environment and Clinical Trials
    • Robins, J.1
  • 2
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins J, Hernán M, Brumback B.Marginal structural models and causal inference in epidemiology. Epidemiology 2000 11(5): 550.
    • (2000) Epidemiology , vol.11 , Issue.5 , pp. 550
    • Robins, J.1    Hernán, M.2    Brumback, B.3
  • 4
    • 53849122359 scopus 로고    scopus 로고
    • Estimation and extrapolation of optimal treatment and testing strategies
    • Robins J, Orellana L, Rotnitzky A.Estimation and extrapolation of optimal treatment and testing strategies. Statistics in Medicine 2008 27(23): 4678-4721.
    • (2008) Statistics in Medicine , vol.27 , Issue.23 , pp. 4678-4721
    • Robins, J.1    Orellana, L.2    Rotnitzky, A.3
  • 5
    • 64349118898 scopus 로고    scopus 로고
    • Timing of initiation of antiretroviral therapy in AIDS-free HIV-1-infected patients: a collaborative analysis of 18 HIV cohort studies
    • Sterne J, May M, Costagliola D, de Wolf F, Phillips A, Harris R, Funk M, Geskus R, Gill J, Dabis F et al. Timing of initiation of antiretroviral therapy in AIDS-free HIV-1-infected patients: a collaborative analysis of 18 HIV cohort studies. The Lancet 2009 373(9672): 1352-1363.
    • (2009) The Lancet , vol.373 , Issue.9672 , pp. 1352-1363
    • Sterne, J.1    May, M.2    Costagliola, D.3    de Wolf, F.4    Phillips, A.5    Harris, R.6    Funk, M.7    Geskus, R.8    Gill, J.9    Dabis, F.10
  • 6
    • 33845907187 scopus 로고    scopus 로고
    • Estimation of optimal dynamic anticoagulation regimes from observational data: a regret-based approach
    • Rosthøj S, Fullwood C, Henderson R, Stewart S.Estimation of optimal dynamic anticoagulation regimes from observational data: a regret-based approach. Statistics in Medicine 2006 25(24): 4197-4215.
    • (2006) Statistics in Medicine , vol.25 , Issue.24 , pp. 4197-4215
    • Rosthøj, S.1    Fullwood, C.2    Henderson, R.3    Stewart, S.4
  • 7
    • 78650042610 scopus 로고    scopus 로고
    • Regret-regression for optimal dynamic treatment regimes
    • Henderson R, Ansell P, Alshibani D.Regret-regression for optimal dynamic treatment regimes. Biometrics 2009 66(4): 1192-1201.
    • (2009) Biometrics , vol.66 , Issue.4 , pp. 1192-1201
    • Henderson, R.1    Ansell, P.2    Alshibani, D.3
  • 8
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with a sustained exposure period-application to control of the healthy worker survivor effect
    • Robins J.A new approach to causal inference in mortality studies with a sustained exposure period-application to control of the healthy worker survivor effect. Mathematical Modelling 1986 7(9-12): 1393-1512.
    • (1986) Mathematical Modelling , vol.7 , Issue.9-12 , pp. 1393-1512
    • Robins, J.1
  • 9
    • 84870949342 scopus 로고    scopus 로고
    • Tutorial in biostatistics: methods for dealing with time-varying confounding. (submitted).
    • Daniel R, Cousens S, De Stavola B, Kenward M, Sterne J.Tutorial in biostatistics: methods for dealing with time-varying confounding. 2011. (submitted).
    • (2011)
    • Daniel, R.1    Cousens, S.2    De Stavola, B.3    Kenward, M.4    Sterne, J.5
  • 10
    • 21644449079 scopus 로고    scopus 로고
    • Analysis of longitudinal marginal structural models
    • Bryan J, Yu Z, Van Der Laan M.Analysis of longitudinal marginal structural models. Biostatistics 2004 5(3): 361.
    • (2004) Biostatistics , vol.5 , Issue.3 , pp. 361
    • Bryan, J.1    Yu, Z.2    Van Der Laan, M.3
  • 11
    • 84870929862 scopus 로고    scopus 로고
    • Simulation from structural survival models under complex time-varying data structures, JSM Proceedings, Section on Statistics in Epidemiology: American Statistical Association, Denver, CO.
    • Young J, Hernán M, Picciotto S, Robins J. Simulation from structural survival models under complex time-varying data structures, JSM Proceedings, Section on Statistics in Epidemiology: American Statistical Association, Denver, CO., 2008.
    • (2008)
    • Young, J.1    Hernán, M.2    Picciotto, S.3    Robins, J.4
  • 12
    • 77950467310 scopus 로고    scopus 로고
    • Relation between three classes of structural models for the effect of a time-varying exposure on survival
    • Young J, Hernán M, Picciotto S, Robins J. Relation between three classes of structural models for the effect of a time-varying exposure on survival. Lifetime data analysis 2010 16(1): 71-84.
    • (2010) Lifetime data analysis , vol.16 , Issue.1 , pp. 71-84
    • Young, J.1    Hernán, M.2    Picciotto, S.3    Robins, J.4
  • 14
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin D.Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 1974 66: 688-701.
    • (1974) Journal of Educational Psychology , vol.66 , pp. 688-701
    • Rubin, D.1
  • 15
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects: the role of randomization
    • Rubin D.Bayesian inference for causal effects: the role of randomization. Annals of Statistics 1978 6(1): 34-68.
    • (1978) Annals of Statistics , vol.6 , Issue.1 , pp. 34-68
    • Rubin, D.1
  • 16
    • 1542742382 scopus 로고    scopus 로고
    • Causal inference without counterfactuals (with Discussion)
    • Dawid A.Causal inference without counterfactuals (with Discussion). Journal of the American Statistical Association 2000 95: 407-448.
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 407-448
    • Dawid, A.1
  • 17
    • 77953165632 scopus 로고    scopus 로고
    • Counterfactuals, hypotheticals and potential responses: a philosophical examination of statistical causality
    • In, Russo F, Williamson J (eds), College Publications, Texts In Philosophy Series, London.
    • Dawid A. 2007. Counterfactuals, hypotheticals and potential responses: a philosophical examination of statistical causality, In Causality and Probability in the Sciences, Russo F, Williamson J (eds), College Publications, Texts In Philosophy Series Vol. 5, London.
    • (2007) Causality and Probability in the Sciences , vol.5
    • Dawid, A.1
  • 18
    • 0004047518 scopus 로고    scopus 로고
    • Oxford University Press: New York, NY
    • Lauritzen S.Graphical Models, Oxford University Press: New York, NY, 1996.
    • (1996) Graphical Models
    • Lauritzen, S.1
  • 19
    • 0002384709 scopus 로고
    • Conditional independence in statistical theory (with Discussion)
    • Dawid A.Conditional independence in statistical theory (with Discussion). Journal of the Royal Statistical Society 1979 41: 1-31.
    • (1979) Journal of the Royal Statistical Society , vol.41 , pp. 1-31
    • Dawid, A.1
  • 20
    • 0001926461 scopus 로고    scopus 로고
    • Causal inference from graphical models
    • Barndorff-Nielsen OE, Cox DR, Klüppelberg C (eds), CRC Press, London.
    • Lauritzen S. 2000. Causal inference from graphical models, In Complex Stochastic Systems, Barndorff-Nielsen OE, Cox DR, Klüppelberg C (eds), CRC Press, London.
    • (2000) Complex Stochastic Systems
    • Lauritzen, S.1
  • 21
    • 78751616989 scopus 로고    scopus 로고
    • Identifying the consequences of dynamic treatment strategies: a decision-theoretic overview
    • Dawid A, Didelez V.Identifying the consequences of dynamic treatment strategies: a decision-theoretic overview. Statistics Surveys 2010 4: 184-231.
    • (2010) Statistics Surveys , vol.4 , pp. 184-231
    • Dawid, A.1    Didelez, V.2
  • 22
    • 84972538789 scopus 로고
    • Graphical models, causality and interventions
    • Pearl J. Graphical models, causality and interventions. Statistical Science 1993 8: 266-269.
    • (1993) Statistical Science , vol.8 , pp. 266-269
    • Pearl, J.1
  • 23
    • 0036679398 scopus 로고    scopus 로고
    • Influence diagrams for causal modelling and inference
    • Corrigenda, ibid., 437.
    • Dawid A.Influence diagrams for causal modelling and inference. International Statistical Review 2002 70: 161-189. Corrigenda, ibid., 437.
    • (2002) International Statistical Review , vol.70 , pp. 161-189
    • Dawid, A.1
  • 25
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • Pearl J.Causal diagrams for empirical research. Biometrika 1995 82(4): 669-710.
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 669-710
    • Pearl, J.1
  • 26
    • 0001815275 scopus 로고    scopus 로고
    • Causal inference from complex longitudinal data
    • Berkane M (ed), Lecture Notes in Statistics, Springer, New York.
    • Robins J. 1997. Causal inference from complex longitudinal data, In Latent Variable Modeling and Applications to Causality, vol. 120, Berkane M (ed), Lecture Notes in Statistics, Springer, New York.
    • (1997) Latent Variable Modeling and Applications to Causality , vol.120
    • Robins, J.1
  • 27
    • 0000657751 scopus 로고
    • Probabilistic evaluation of sequential plans from causal models with hidden variables
    • Besnard P, Hanks S (eds), Morgan Kaufmann, San Francisco.
    • Pearl J, Robins J. 1995. Probabilistic evaluation of sequential plans from causal models with hidden variables, In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, Besnard P, Hanks S (eds), Morgan Kaufmann, San Francisco.
    • (1995) Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence
    • Pearl, J.1    Robins, J.2
  • 30
    • 0038334174 scopus 로고    scopus 로고
    • Quantifying biases in causal models: classical confounding vs collider-stratification bias
    • Greenland S.Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology 2003 14(3): 300.
    • (2003) Epidemiology , vol.14 , Issue.3 , pp. 300
    • Greenland, S.1
  • 31
    • 0026643893 scopus 로고
    • G-estimation of the effect of prophylaxis therapy for pneumocystis carinii pneumonia on the survival of aids patients
    • Robins J, Blevins D, Ritter G, Wulfsohn M.G-estimation of the effect of prophylaxis therapy for pneumocystis carinii pneumonia on the survival of aids patients. Epidemiology 1992 3(4): 319-336.
    • (1992) Epidemiology , vol.3 , Issue.4 , pp. 319-336
    • Robins, J.1    Blevins, D.2    Ritter, G.3    Wulfsohn, M.4
  • 32
    • 77950534266 scopus 로고    scopus 로고
    • Accuracy of conventional and marginal structural Cox model estimators: A simulation study
    • Xiao Y, Abrahamowicz M, Moodie E. Accuracy of conventional and marginal structural Cox model estimators: A simulation study. The International Journal of Biostatistics 2010 6(2): 13.
    • (2010) The International Journal of Biostatistics , vol.6 , Issue.2 , pp. 13
    • Xiao, Y.1    Abrahamowicz, M.2    Moodie, E.3
  • 33
    • 80051552334 scopus 로고    scopus 로고
    • A comparison of methods to estimate the hazard ratio under conditions of time-varying confounding and nonpositivity
    • Naimi A, Cole S, Westreich D, Richardson D.A comparison of methods to estimate the hazard ratio under conditions of time-varying confounding and nonpositivity. Epidemiology 2011 22(5): 718.
    • (2011) Epidemiology , vol.22 , Issue.5 , pp. 718
    • Naimi, A.1    Cole, S.2    Westreich, D.3    Richardson, D.4
  • 35
    • 79960249370 scopus 로고    scopus 로고
    • A martingale approach to continuous-time marginal structural models
    • Røysland K.A martingale approach to continuous-time marginal structural models. Bernoulli 2011 17(3): 895-915.
    • (2011) Bernoulli , vol.17 , Issue.3 , pp. 895-915
    • Røysland, K.1
  • 36
    • 0025695593 scopus 로고
    • Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham Heart Study
    • D'Agostino R, Lee M, Belanger A, Cupples L, Anderson K, Kannel W. Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham Heart Study. Statistics in Medicine 1990 9(12): 1501-1515.
    • (1990) Statistics in Medicine , vol.9 , Issue.12 , pp. 1501-1515
    • D'Agostino, R.1    Lee, M.2    Belanger, A.3    Cupples, L.4    Anderson, K.5    Kannel, W.6
  • 37
    • 84855817938 scopus 로고    scopus 로고
    • gformula: Estimating causal effects in the presence of time-varying confounding or mediation using the g-computation formula
    • Daniel R, De Stavola B, Cousens S. gformula: Estimating causal effects in the presence of time-varying confounding or mediation using the g-computation formula. The Stata Journal 2011 11(4): 479.
    • (2011) The Stata Journal , vol.11 , Issue.4 , pp. 479
    • Daniel, R.1    De Stavola, B.2    Cousens, S.3
  • 39
    • 77950539248 scopus 로고    scopus 로고
    • Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: main content
    • Orellana L, Rotnitzky A, Robins J.Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: main content. The International Journal of Biostatistics 2010 6(2).
    • (2010) The International Journal of Biostatistics , vol.6 , Issue.2
    • Orellana, L.1    Rotnitzky, A.2    Robins, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.