메뉴 건너뛰기




Volumn 20, Issue 6, 2012, Pages 855-876

Sensitivity-independent differential privacy via prior knowledge refinement

Author keywords

Differential privacy; Knowledge refinement; Statistical databases

Indexed keywords

INFORMATION SYSTEMS; SOFTWARE ENGINEERING;

EID: 84870935528     PISSN: 02184885     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218488512400272     Document Type: Article
Times cited : (3)

References (13)
  • 1
    • 33745556605 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • TCC LNCS 3876, Springer, 2006
    • C. Dwork, F. McSherry, K. Nissim and A. Smith, Calibrating noise to sensitivity in private data analysis, in Proc. 3rd Theory of Cryptography Conf. (TCC 2006), LNCS 3876, Springer, 2006, pp. 265-284.
    • (2006) Proc. 3rd Theory of Cryptography Conf. , pp. 265-284
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 9
    • 84867559122 scopus 로고    scopus 로고
    • How can we analyze differentially-private synthetic datasets?
    • A. Charest, How can we analyze differentially-private synthetic datasets?, J. Privacy and Confidentiality 2(2) (2010).
    • (2010) J. Privacy and Confidentiality , vol.2 , Issue.2
    • Charest, A.1
  • 12
    • 79953250055 scopus 로고    scopus 로고
    • Evaluating Laplace noise addition to satisfy differential privacy for numeric data
    • R. Sarathy and K. Muralidhar, Evaluating Laplace noise addition to satisfy differential privacy for numeric data, Trans. Data Privacy 4(1) (2011) 1-17.
    • (2011) Trans. Data Privacy , vol.4 , Issue.1 , pp. 1-17
    • Sarathy, R.1    Muralidhar, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.