메뉴 건너뛰기




Volumn 31, Issue 30, 2012, Pages 4456-4471

Flexible parametric joint modelling of longitudinal and survival data

Author keywords

Flexible parametric survival models; Gauss Hermite quadrature; Joint modelling; Mixed effects; Restricted cubic splines

Indexed keywords

PROTHROMBIN;

EID: 84870913219     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.5644     Document Type: Article
Times cited : (59)

References (32)
  • 1
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics 1997; 53(1):330-339.
    • (1997) Biometrics , vol.53 , Issue.1 , pp. 330-339
    • Wulfsohn, M.S.1    Tsiatis, A.A.2
  • 2
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data. Biostatistics 2000; 1(4):465-480.
    • (2000) Biostatistics , vol.1 , Issue.4 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 3
    • 24144440046 scopus 로고    scopus 로고
    • Joint modelling of accelerated failure time and longitudinal data
    • Tseng YK, Hsieh F, Wang JL. Joint modelling of accelerated failure time and longitudinal data. Biometrika 2005; 92(3):587-603.
    • (2005) Biometrika , vol.92 , Issue.3 , pp. 587-603
    • Tseng, Y.K.1    Hsieh, F.2    Wang, J.L.3
  • 4
    • 77954944281 scopus 로고    scopus 로고
    • Basic concepts and methods for joint models of longitudinal and survival data
    • Ibrahim JG, Chu H, Chen LM. Basic concepts and methods for joint models of longitudinal and survival data. Journal of Clinical Oncology 2010; 28(16):2796-2801.
    • (2010) Journal of Clinical Oncology , vol.28 , Issue.16 , pp. 2796-2801
    • Ibrahim, J.G.1    Chu, H.2    Chen, L.M.3
  • 5
    • 36749005103 scopus 로고    scopus 로고
    • Joint models for a primary endpoint and multiple longitudinal covariate processes
    • Li E, Wang N, Wang NY. Joint models for a primary endpoint and multiple longitudinal covariate processes. Biometrics 2007; 63(4):1068-1078.
    • (2007) Biometrics , vol.63 , Issue.4 , pp. 1068-1078
    • Li, E.1    Wang, N.2    Wang, N.Y.3
  • 6
    • 79955847737 scopus 로고    scopus 로고
    • A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event
    • Rizopoulos D, Ghosh P. A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Statistics in Medicine 2011; 30(12):1366-1380.
    • (2011) Statistics in Medicine , vol.30 , Issue.12 , pp. 1366-1380
    • Rizopoulos, D.1    Ghosh, P.2
  • 8
    • 0042485002 scopus 로고    scopus 로고
    • The joint modeling of a longitudinal disease progression marker and the failure time process in the presence of cure
    • Law NJ, Taylor JMG, Sandler H. The joint modeling of a longitudinal disease progression marker and the failure time process in the presence of cure. Biostatistics 2002; 3(4):547-563.
    • (2002) Biostatistics , vol.3 , Issue.4 , pp. 547-563
    • Law, N.J.1    Taylor, J.M.G.2    Sandler, H.3
  • 9
    • 33745288267 scopus 로고    scopus 로고
    • Joint models for multivariate longitudinal and multivariate survival data
    • Chi YY, Ibrahim JG. Joint models for multivariate longitudinal and multivariate survival data. Biometrics 2006; 62(2):432-445.
    • (2006) Biometrics , vol.62 , Issue.2 , pp. 432-445
    • Chi, Y.Y.1    Ibrahim, J.G.2
  • 10
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and time-to-event data: an overview
    • Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 2004; 14:809-834.
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.A.1    Davidian, M.2
  • 11
    • 8644269772 scopus 로고    scopus 로고
    • Joint longitudinal-survival-cure models and their application to prostate cancer
    • Yu M, Law NJ, Taylor JMG, Sandler H. Joint longitudinal-survival-cure models and their application to prostate cancer. Statistica Sinica 2004; 14:835-862.
    • (2004) Statistica Sinica , vol.14 , pp. 835-862
    • Yu, M.1    Law, N.J.2    Taylor, J.M.G.3    Sandler, H.4
  • 12
    • 84946045727 scopus 로고
    • Approximations to the log-likelihood function in the nonlinear mixed-effects model
    • Pinheiro JC, Bates DM. Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics 1995; 4(1):12-35.
    • (1995) Journal of Computational and Graphical Statistics , vol.4 , Issue.1 , pp. 12-35
    • Pinheiro, J.C.1    Bates, D.M.2
  • 13
    • 0037102914 scopus 로고    scopus 로고
    • Flexible parametric proportional hazards and proportional odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects
    • Royston P, Parmar MKB. Flexible parametric proportional hazards and proportional odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in Medicine 2002; 21(15):2175-2197.
    • (2002) Statistics in Medicine , vol.21 , Issue.15 , pp. 2175-2197
    • Royston, P.1    Parmar, M.K.B.2
  • 15
    • 0024596532 scopus 로고
    • Flexible regression models with cubic splines
    • Durrleman S, Simon R. Flexible regression models with cubic splines. Statistics in Medicine 1989; 8(5):551-561.
    • (1989) Statistics in Medicine , vol.8 , Issue.5 , pp. 551-561
    • Durrleman, S.1    Simon, R.2
  • 16
    • 68949111979 scopus 로고    scopus 로고
    • Further development of flexible parametric models for survival analysis
    • Lambert PC, Royston P. Further development of flexible parametric models for survival analysis. The Stata Journal 2009; 9:265-290.
    • (2009) The Stata Journal , vol.9 , pp. 265-290
    • Lambert, P.C.1    Royston, P.2
  • 17
    • 80052787679 scopus 로고    scopus 로고
    • Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data
    • Rizopoulos D. Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics 2011; 67(3):819-829.
    • (2011) Biometrics , vol.67 , Issue.3 , pp. 819-829
    • Rizopoulos, D.1
  • 21
    • 0013105470 scopus 로고    scopus 로고
    • Reliable estimation of generalized linear mixed models using adaptive quadrature
    • Rabe-Hesketh S, Skrondal A, Pickles A. Reliable estimation of generalized linear mixed models using adaptive quadrature. The Stata Journal 2002; 2:1-21.
    • (2002) The Stata Journal , vol.2 , pp. 1-21
    • Rabe-Hesketh, S.1    Skrondal, A.2    Pickles, A.3
  • 22
    • 84870896779 scopus 로고    scopus 로고
    • STJM: Stata module to fit shared parameter joint models of longitudinal and survival data. Statistical Software Components, Boston College Department of Economics, August .
    • Crowther MJ. STJM: Stata module to fit shared parameter joint models of longitudinal and survival data. Statistical Software Components, Boston College Department of Economics, August 2012.
    • (2012)
    • Crowther, M.J.1
  • 23
    • 77955157844 scopus 로고    scopus 로고
    • JM: An R Package for the joint modelling of longitudinal and time-to-event data
    • 7
    • Rizopoulos D. JM: An R Package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software 7 2010; 35(9):1-33.
    • (2010) Journal of Statistical Software , vol.35 , Issue.9 , pp. 1-33
    • Rizopoulos, D.1
  • 24
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 2005; 24(11):1713-1723.
    • (2005) Statistics in Medicine , vol.24 , Issue.11 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 27
    • 77949348568 scopus 로고    scopus 로고
    • Estimating the crude probability of death due to cancer and other causes using relative survival models
    • Lambert PC, Dickman PW, Nelson CP, Royston P. Estimating the crude probability of death due to cancer and other causes using relative survival models. Statistics in Medicine 2010; 29(7-8):885-895.
    • (2010) Statistics in Medicine , vol.29 , Issue.7-8 , pp. 885-895
    • Lambert, P.C.1    Dickman, P.W.2    Nelson, C.P.3    Royston, P.4
  • 29
    • 0034086702 scopus 로고    scopus 로고
    • Handling uncertainty in cost-effectiveness models
    • Briggs AH. Handling uncertainty in cost-effectiveness models. Pharmacoeconomics 2000; 17(5):479-500.
    • (2000) Pharmacoeconomics , vol.17 , Issue.5 , pp. 479-500
    • Briggs, A.H.1
  • 30
    • 79959332508 scopus 로고    scopus 로고
    • Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models
    • Andersson TM, Dickman PW, Eloranta S, Lambert PC. Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models. BMC Medical Research Methodology 2011; 11:96.
    • (2011) BMC Medical Research Methodology , vol.11 , pp. 96
    • Andersson, T.M.1    Dickman, P.W.2    Eloranta, S.3    Lambert, P.C.4
  • 31
    • 1342289473 scopus 로고    scopus 로고
    • Separate and joint modeling of longitudinal and event time data using standard computer packages
    • Guo X, Carlin BP. Separate and joint modeling of longitudinal and event time data using standard computer packages. The American Statistician 2004; 58(1):16-24.
    • (2004) The American Statistician , vol.58 , Issue.1 , pp. 16-24
    • Guo, X.1    Carlin, B.P.2
  • 32
    • 15044356987 scopus 로고    scopus 로고
    • A flexible B-spline model for multiple longitudinal biomarkers and survival
    • Brown ER, Ibrahim JG, DeGruttola V. A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics 2005; 61(1):64-73.
    • (2005) Biometrics , vol.61 , Issue.1 , pp. 64-73
    • Brown, E.R.1    Ibrahim, J.G.2    DeGruttola, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.