-
1
-
-
0000916852
-
Testing for symmetry
-
Csörgö, S., Heathcote, C. R. (1987). Testing for Symmetry, Biometrika 74(1):177-184.
-
(1987)
Biometrika
, vol.74
, Issue.1
, pp. 177-184
-
-
Csörgö, S.1
Heathcote, C.R.2
-
3
-
-
0012335550
-
Simulation based finite sample Normality test in linear regression
-
Dufour, J. M., Farhat, A., Gardiol, L. and Khalaf, L. (1998). Simulation based Finite Sample Normality Test in Linear Regression, Econometric Journal 1:154-173.
-
(1998)
Econometric Journal
, vol.1
, pp. 154-173
-
-
Dufour, J.M.1
Farhat, A.2
Gardiol, L.3
Khalaf, L.4
-
5
-
-
0002054359
-
The empirical characteristic function and its applications
-
Feuerverger, A., Mureika, R. A. (1977). The Empirical Characteristic Function and its Applications, The Annals of Statistics 5(1):89-97.
-
(1977)
The Annals of Statistics
, vol.5
, Issue.1
, pp. 89-97
-
-
Feuerverger, A.1
Mureika, R.A.2
-
7
-
-
0003506109
-
-
New Jersey: Pearson
-
Hair, J. F. Jr., Black, W. C., Babin, B. J., and Anderson, R. E. (2010). Multivariate Data Analysis, New Jersey: Pearson.
-
(2010)
Multivariate Data Analysis
-
-
Hair Jr., J.F.1
Black, W.C.2
Babin, B.J.3
Anderson, R.E.4
-
8
-
-
0002438368
-
Testing multivariate symmetry
-
Heathcote, C. R., Rachev, S. T., Cheng, B. (1995). Testing Multivariate Symmetry, Journal of Multivariate Analysis 54:91-112.
-
(1995)
Journal of Multivariate Analysis
, vol.54
, pp. 91-112
-
-
Heathcote, C.R.1
Rachev, S.T.2
Cheng, B.3
-
10
-
-
33750160667
-
A graphical technique for assessing multivariate non Normality
-
Holgersson, H. E. T. (2006). A Graphical Technique for Assessing Multivariate Non normality, Computational Statistics 21(1):141-150.
-
(2006)
Computational Statistics
, vol.21
, Issue.1
, pp. 141-150
-
-
Holgersson, H.E.T.1
-
11
-
-
84861253232
-
Some empirical distributions of bivariate T2 and homoscedasticity criterion M under unequal variance and leptokurtosis
-
Hopkins, J. W., Clay, P. P. F. (1963). Some Empirical Distributions of Bivariate T2 and Homoscedasticity Criterion M Under Unequal Variance and Leptokurtosis, JASA 58(304):1048-1153.
-
(1963)
JASA
, vol.58
, Issue.304
, pp. 1048-1153
-
-
Hopkins, J.W.1
Clay, P.P.F.2
-
12
-
-
3042680039
-
Testing for multivariate Normality in simultaneous-equation models
-
Jarque, C. M., Mckenzie, C. R. (1995). Testing for Multivariate Normality in Simultaneous-Equation Models, Mathematics and Computers in Simulation 39(3-4):323-328.
-
(1995)
Mathematics and Computers in Simulation
, vol.39
, Issue.3-4
, pp. 323-328
-
-
Jarque, C.M.1
Mckenzie, C.R.2
-
15
-
-
33750172093
-
Characterization of the normal distribution
-
Lukacs, E. A. (1942). Characterization of the Normal Distribution, Annals of Mathematical Statistics 13:91-93.
-
(1942)
Annals of Mathematical Statistics
, vol.13
, pp. 91-93
-
-
Lukacs, E.A.1
-
16
-
-
0346430316
-
Measures of multivariate skewness and kurtosis for tests of Nonnormality
-
Lütkepohl, H., Theilen, B. (1991). Measures of Multivariate Skewness and Kurtosis for Tests of Nonnormality, Statistical Papers 32:179-193.
-
(1991)
Statistical Papers
, vol.32
, pp. 179-193
-
-
Lütkepohl, H.1
Theilen, B.2
-
17
-
-
2942611661
-
Measures of multivariate skewness and kurtosis with applications
-
Mardia, K.V. (1970). Measures of Multivariate Skewness and Kurtosis with Applications, Biometrika 57(3):519-530.
-
(1970)
Biometrika
, vol.57
, Issue.3
, pp. 519-530
-
-
Mardia, K.V.1
-
19
-
-
0013037620
-
A measure of the skewness and kurtosis and a graphical method for assessing multivariate Normality
-
Srivastava, M. S. (1984). A Measure of the Skewness and Kurtosis and a Graphical Method for Assessing Multivariate Normality, Statistics and Probability Letters 5:15-18.
-
(1984)
Statistics and Probability Letters
, vol.5
, pp. 15-18
-
-
Srivastava, M.S.1
|