메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1061-1064

Low complexity algorithm for seizure prediction using Adaboost

Author keywords

adaboost; feature selection; power spectral density; prediction; seizure

Indexed keywords

ADABOOST ALGORITHM; BASE CLASSIFIERS; DECISION STUMPS; FALSE ALARM RATE; FALSE ALARMS; FEATURE RANKING; FEATURE SELECTION AND CLASSIFICATION; IMPLANTABLE DEVICES; LINEAR CLASSIFIERS; LOW COMPLEXITY ALGORITHM; LOW COMPUTATIONAL COMPLEXITY; LOW-COMPLEXITY; NONLINEAR CLASSIFIERS; SEIZURE; SEIZURE PREDICTION; SPECTRAL POWER; TIME SPENT;

EID: 84870790574     PISSN: 1557170X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/EMBC.2012.6346117     Document Type: Conference Paper
Times cited : (27)

References (15)
  • 1
    • 80053063924 scopus 로고    scopus 로고
    • Seizure prediction with spectral power of EEG using cost-sensitive support vector machines
    • Oct.
    • Y. Park, L. Luo, K.K. Parhi and T. Netoff, "Seizure prediction with spectral power of EEG using cost-sensitive support vector machines," Epilepsia, 52(10), pp. 1761-1770, Oct. 2011.
    • (2011) Epilepsia , vol.52 , Issue.10 , pp. 1761-1770
    • Park, Y.1    Luo, L.2    Parhi, K.K.3    Netoff, T.4
  • 2
    • 78049387573 scopus 로고    scopus 로고
    • Seizure prediction with spectral power of time/space-differential EEG signals using cost-sensitive support vector machine
    • March
    • Y. Park, T. Netoff, K. Parhi, "Seizure prediction with spectral power of time/space-differential EEG signals using cost-sensitive support vector machine," IEEE ICASSP, pp.5450-5453, March 2010.
    • (2010) IEEE ICASSP , pp. 5450-5453
    • Park, Y.1    Netoff, T.2    Parhi, K.3
  • 3
    • 77951267316 scopus 로고    scopus 로고
    • Real-time epileptic seizure prediction using AR models and support vector machines
    • May
    • L. Chisci, A. Mavino, et. al, "Real-Time epileptic seizure prediction using AR models and support vector machines," IEEE Trans. on Biomedical Engineering, vol.57, no.5, pp.1124-1132, May 2010.
    • (2010) IEEE Trans. on Biomedical Engineering , vol.57 , Issue.5 , pp. 1124-1132
    • Chisci, L.1    Mavino, A.2
  • 4
    • 78650847132 scopus 로고    scopus 로고
    • Wavelet transform and cross-correlation as tools for seizure prediction
    • Sept.
    • C. C. B. Suarez, E. T. Fonoff, et. al, "Wavelet transform and cross-correlation as tools for seizure prediction," IEEE EMBC, pp.4020-4023, Sept. 2010.
    • (2010) IEEE EMBC , pp. 4020-4023
    • Suarez, C.C.B.1    Fonoff, E.T.2
  • 5
    • 79951596284 scopus 로고    scopus 로고
    • VLSI implementation for epileptic seizure prediction system based on wavelet and chaos theory
    • Nov.
    • S. Hung, C. Chao, S. Wang, et. al, "VLSI implementation for epileptic seizure prediction system based on wavelet and chaos theory," IEEE Region Conference TENCON, pp.364-368, Nov. 2010.
    • (2010) IEEE Region Conference TENCON , pp. 364-368
    • Hung, S.1    Chao, C.2    Wang, S.3
  • 6
    • 80051641173 scopus 로고    scopus 로고
    • Epileptic seizure prediction using the spatiotemporal correlation structure of intracranial EEG
    • May
    • J. R. Williamson, D. W. Bliss, D.W. Browne, "Epileptic seizure prediction using the spatiotemporal correlation structure of intracranial EEG," IEEE ICASSP, pp.665-668, May 2011.
    • (2011) IEEE ICASSP , pp. 665-668
    • Williamson, J.R.1    Bliss, D.W.2    Browne, D.W.3
  • 7
    • 77950281846 scopus 로고    scopus 로고
    • A micro support vector machine based seizure detection architecture for embedded medical devices
    • Sept
    • A. Shoeb, et al., "A micro support vector machine based seizure detection architecture for embedded medical devices," IEEE EMBS, pp. 4202-4205. Sept 2009.
    • (2009) IEEE EMBS , pp. 4202-4205
    • Shoeb, A.1
  • 8
    • 58049188031 scopus 로고    scopus 로고
    • Comparing SVM and convolutional networks for epileptic seizure prediction from intracranial EEG
    • Oct.
    • P. W. Mirowski, et al., "Comparing SVM and convolutional networks for epileptic seizure prediction from intracranial EEG," IEEE Workshop on MLSP, pp.244-249, Oct. 2008.
    • (2008) IEEE Workshop on MLSP , pp. 244-249
    • Mirowski, P.W.1
  • 9
    • 84870776907 scopus 로고    scopus 로고
    • Freiburg EEG database. Available from: https://epilepsy.uni-freiburg.de/ freiburg-seizureprediction-project/eeg-database.
    • Freiburg EEG Database
  • 12
    • 45449100708 scopus 로고    scopus 로고
    • Selecting features for object detection using an adaboost-compatible evaluation function
    • L. Furst, S. Fidler, A. Leonardis, "Selecting features for object detection using an Adaboost-compatible evaluation function," Patter recognition letters, pp. 1603-1612, 2008.
    • (2008) Patter Recognition Letters , pp. 1603-1612
    • Furst, L.1    Fidler, S.2    Leonardis, A.3
  • 14
    • 57749200058 scopus 로고    scopus 로고
    • Feature selection by adaBoost for SVM-based face detection
    • D. D. Le, "Feature selection by adaBoost for SVM-based face detection," Forum on Information Technology, pp. 183-186, 2004.
    • (2004) Forum on Information Technology , pp. 183-186
    • Le, D.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.