메뉴 건너뛰기




Volumn 43, Issue 5-6, 2012, Pages 327-332

Development and evaluation of a Naïve Bayesian model for coding causation of workers' compensation claims

Author keywords

Accident narratives; Bayes; Data mining; Text classification; Text mining

Indexed keywords

BAYES; BAYESIAN MODEL; FREEFORMS; INDUSTRY SECTORS; LARGE DATABASE; LARGE DATASETS; MANUAL CODING; MUSCULOSKELETAL DISORDERS; REPETITIVE MOTIONS; RISK FACTORS; TEXT CLASSIFICATION; TEXT-MINING; WORKERS' COMPENSATION;

EID: 84870725370     PISSN: 00224375     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jsr.2012.10.012     Document Type: Article
Times cited : (45)

References (11)
  • 1
    • 70450234530 scopus 로고    scopus 로고
    • Nonfatal occupational injuries and illnesses requiring days away from work, 2010
    • Bureau Of Labor Statistics [bls] U.S. Department of Labor, Bureau of Labor Statistics Washington, DC
    • Bureau of Labor Statistics [BLS] Nonfatal occupational injuries and illnesses requiring days away from work, 2010 Bureau of Labor Statistics News Release 2011 U.S. Department of Labor, Bureau of Labor Statistics Washington, DC
    • (2011) Bureau of Labor Statistics News Release
  • 2
    • 84870712227 scopus 로고    scopus 로고
    • Bureau Of Labor Statistics [bls] (accessed on February 16, 2012)
    • Bureau of Labor Statistics [BLS] http://www.bls.gov/iif/oiics-manual- 2010.pdf 2012 (accessed on February 16, 2012)
    • (2012)
  • 3
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos, and M. Pazzani On the optimality of the simple Bayesian classifier under zero-one loss Machine Learning 29 1997 103 130
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 4
    • 0002346866 scopus 로고    scopus 로고
    • Hierarchically classifying documents using very few words
    • In Proceedings of ICML-97 (pp. 170-178). Nashville, US
    • D. Koller, and M. Sahami Hierarchically classifying documents using very few words In Proceedings of ICML-97 14th International Conference on Machine Learning 1997 (pp. 170-178). Nashville, US
    • (1997) 14th International Conference on Machine Learning
    • Koller, D.1    Sahami, M.2
  • 5
    • 71549142879 scopus 로고    scopus 로고
    • Bayesian method6s: A useful tool for classifying injury narratives into cause groups
    • M. Lehto, H. Marucci-Wellman, and H. Corns Bayesian method6s: a useful tool for classifying injury narratives into cause groups Injury Prevention 15 2009 259 265
    • (2009) Injury Prevention , vol.15 , pp. 259-265
    • Lehto, M.1    Marucci-Wellman, H.2    Corns, H.3
  • 6
    • 84870660724 scopus 로고    scopus 로고
    • Liberty Mutual Research Institute For Safety Author Hopkinton, MA
    • Liberty Mutual Research Institute for Safety 2011 Liberty Mutual Workplace Safety Index 2011 Author Hopkinton, MA 2
    • (2011) 2011 Liberty Mutual Workplace Safety Index , pp. 2
  • 7
    • 81855182186 scopus 로고    scopus 로고
    • A combined Fuzzy and Naïve Bayesian strategy can be used to assign event codes to injury narratives
    • H. Marucci-Wellman, M. Lehto, and H. Corns A combined Fuzzy and Naïve Bayesian strategy can be used to assign event codes to injury narratives Injury Prevention 17 2011 407 414
    • (2011) Injury Prevention , vol.17 , pp. 407-414
    • Marucci-Wellman, H.1    Lehto, M.2    Corns, H.3
  • 8
    • 0003653228 scopus 로고    scopus 로고
    • National Institute For Occupational Safety And Health (niosh) Office of The Director Centers dor Disease Control nd Prevention (cdc) February 8, 2012 (accessed on February 16, 2012)
    • National Institute for Occupational Safety and Health (NIOSH) Office of the Director Centers for Disease Control and Prevention (CDC) The National Occupational Research Agenda (NORA) February 8, 2012 2012 (http://www.cdc.gov/ niosh/nora/ accessed on February 16, 2012)
    • (2012) The National Occupational Research Agenda (NORA)
  • 9
    • 0002442796 scopus 로고    scopus 로고
    • Machine Learning in Automated Text Categorization
    • F. Sebastiani Machine Learning in Automated Text Categorization ACM Computing Surveys 34 2002 1 47
    • (2002) ACM Computing Surveys , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 10
    • 0017500411 scopus 로고
    • A theoretical basis for the use of co-occurrence data in information retrieval
    • C. van Rijsbergen A theoretical basis for the use of co-occurrence data in information retrieval Journal of Documentation 33 1977 106 119
    • (1977) Journal of Documentation , vol.33 , pp. 106-119
    • Van Rijsbergen, C.1
  • 11
    • 0345328778 scopus 로고    scopus 로고
    • Computerized coding of injury narrative data from the National Health Interview Survey
    • H.M. Wellman, M.R. Lehto, and G.S. Sorock Computerized coding of injury narrative data from the National Health Interview Survey Accident; Analysis and Prevention 36 2004 165 171
    • (2004) Accident; Analysis and Prevention , vol.36 , pp. 165-171
    • Wellman, H.M.1    Lehto, M.R.2    Sorock, G.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.