메뉴 건너뛰기




Volumn 67, Issue , 2013, Pages 8-17

Empirical investigation on using wind speed volatility to estimate the operation probability and power output of wind turbines

Author keywords

ARIMA; GARCH; Operation probability; Prediction; Volatility; Wind power; Wind speed

Indexed keywords

ARIMA; EMPIRICAL INVESTIGATION; EXPECTED POWER; GARCH; INTERVAL ESTIMATION; OFFSHORE WIND TURBINES; POWER OUT PUT; QUANTITATIVE METHODOLOGY; VOLATILITY; VOLATILITY FORECASTING; WIND SPEED; WIND SPEED FORECASTING;

EID: 84870678396     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2012.10.016     Document Type: Article
Times cited : (31)

References (32)
  • 1
    • 79956107145 scopus 로고    scopus 로고
    • World Wind Energy Association [accessed February 2012]
    • World Wind Energy Association. World wind energy report; 2010. < http://www.wwindea.org/home/images/stories/pdfs/worldwindenergyreport2010-s.pdf > [accessed February 2012].
    • (2010) World Wind Energy Report
  • 2
    • 77957339498 scopus 로고    scopus 로고
    • A statistical model for estimating electricity produced by wind energy
    • K. Tar, and S. Szegedi A statistical model for estimating electricity produced by wind energy Renew Energy 36 2011 823 828
    • (2011) Renew Energy , vol.36 , pp. 823-828
    • Tar, K.1    Szegedi, S.2
  • 4
    • 50849132200 scopus 로고    scopus 로고
    • A literature review of wind forecasting technology in the world
    • Lausanne; 1-5 July
    • Wu YK, Hong JS. A literature review of wind forecasting technology in the world. In: Proc IEEE power tech 2007, Lausanne; 1-5 July, 2007. p. 504-9.
    • (2007) Proc IEEE Power Tech 2007 , pp. 504-509
    • Wu, Y.K.1    Hong, J.S.2
  • 5
    • 60049084645 scopus 로고    scopus 로고
    • A review on the forecasting of wind speed and generated power
    • L. Ma, S. Luan, C. Jiang, H. Liu, and Y. Zhang A review on the forecasting of wind speed and generated power Renew Sustain Energy Rev 13 4 2009 915 920
    • (2009) Renew Sustain Energy Rev , vol.13 , Issue.4 , pp. 915-920
    • Ma, L.1    Luan, S.2    Jiang, C.3    Liu, H.4    Zhang, Y.5
  • 6
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • DOI 10.1016/S0960-1481(99)00125-1, PII S0960148199001251
    • A. Sfetsos A comparison of various forecasting techniques applied to mean hourly wind speed time series Renew Energy 21 1 2000 23 35 (Pubitemid 30306417)
    • (2000) Renewable Energy , vol.21 , Issue.1 , pp. 23-35
    • Sfetsos, A.1
  • 7
    • 0442296729 scopus 로고    scopus 로고
    • Support vector machines for wind speed prediction
    • DOI 10.1016/j.renene.2003.11.009
    • M.A. Mohandes, T.O. Halawani, S. Rehman, and A.A. Hussain Support vector machines for wind speed prediction Renew Energy 29 2004 939 947 (Pubitemid 38242182)
    • (2004) Renewable Energy , vol.29 , Issue.6 , pp. 939-947
    • Mohandes, M.A.1    Halawani, T.O.2    Rehman, S.3    Hussain, A.A.4
  • 8
    • 67349211771 scopus 로고    scopus 로고
    • Forecasting the wind generation using a two-stage network based on meteorological information
    • S. Fan, J.R. Liao, R. Yokoyama, L. Chen, and W.J. Lee Forecasting the wind generation using a two-stage network based on meteorological information IEEE Trans Energy Convers 24 2 2009 474 482
    • (2009) IEEE Trans Energy Convers , vol.24 , Issue.2 , pp. 474-482
    • Fan, S.1    Liao, J.R.2    Yokoyama, R.3    Chen, L.4    Lee, W.J.5
  • 9
    • 78649814612 scopus 로고    scopus 로고
    • Prediction of wind speed time series using modified Taylor Kriging method
    • H. Liu, J. Shi, and E. Erdem Prediction of wind speed time series using modified Taylor Kriging method Energy 35 12 2010 4870 4879
    • (2010) Energy , vol.35 , Issue.12 , pp. 4870-4879
    • Liu, H.1    Shi, J.2    Erdem, E.3
  • 10
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico using a hybrid ARIMA-ANN model
    • E. Cadenas, and W. Rivera Wind speed forecasting in three different regions of Mexico using a hybrid ARIMA-ANN model Renew Energy 35 12 2010 2732 2738
    • (2010) Renew Energy , vol.35 , Issue.12 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 11
    • 84859416828 scopus 로고    scopus 로고
    • Evaluation of hybrid forecasting approaches for wind speed and power generation time series
    • J. Shi, J. Guo, and S. Zheng Evaluation of hybrid forecasting approaches for wind speed and power generation time series Renew Sustain Energy Rev 16 2012 3471 3480
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 3471-3480
    • Shi, J.1    Guo, J.2    Zheng, S.3
  • 13
    • 70049094192 scopus 로고    scopus 로고
    • Wind power density forecasting using ensemble predictions and time series models
    • J.W. Taylor, P.E. McSharry, and R. Buizza Wind power density forecasting using ensemble predictions and time series models IEEE Trans Energy Convers 24 3 2009 775 782
    • (2009) IEEE Trans Energy Convers , vol.24 , Issue.3 , pp. 775-782
    • Taylor, J.W.1    McSharry, P.E.2    Buizza, R.3
  • 14
    • 79751505649 scopus 로고    scopus 로고
    • Bayesian adaptive combination of short-term wind speed forecasts from neural network models
    • G. Li, and J. Shi Bayesian adaptive combination of short-term wind speed forecasts from neural network models Renew Energy 36 1 2010 352 359
    • (2010) Renew Energy , vol.36 , Issue.1 , pp. 352-359
    • Li, G.1    Shi, J.2
  • 15
    • 33644803743 scopus 로고    scopus 로고
    • Time series analysis of wind speed with time-varying turbulence
    • DOI 10.1002/env.754
    • B.T. Ewing, J.B. Kruse, and J.L. Schroeder Time series analysis of wind speed with time-varying turbulence Environmetrics 17 2006 119 127 (Pubitemid 43351823)
    • (2006) Environmetrics , vol.17 , Issue.2 , pp. 119-127
    • Ewing, B.T.1    Kruse, J.B.2    Schroeder, J.L.3
  • 16
    • 52949133774 scopus 로고    scopus 로고
    • Analysis of time-varying turbulence in geographically-dispersed wind energy markets
    • B.T. Ewing, J.B. Kruse, and M.A. Thompson Analysis of time-varying turbulence in geographically-dispersed wind energy markets Energy Sour Part B: Econ Plan Policy 3 2008 340 347
    • (2008) Energy Sour Part B: Econ Plan Policy , vol.3 , pp. 340-347
    • Ewing, B.T.1    Kruse, J.B.2    Thompson, M.A.3
  • 17
    • 70449587294 scopus 로고    scopus 로고
    • Modeling wind speed and time-varying turbulence in geographically dispersed wind energy markets in China
    • J.E. Payne, and B. Carroll Modeling wind speed and time-varying turbulence in geographically dispersed wind energy markets in China Energy Sour Part A: Recov Utiliz Environ Eff 31 19 2009 1759 1769
    • (2009) Energy Sour Part A: Recov Utiliz Environ Eff , vol.31 , Issue.19 , pp. 1759-1769
    • Payne, J.E.1    Carroll, B.2
  • 18
    • 70449568908 scopus 로고    scopus 로고
    • Further evidence on modeling wind speed and time-varying turbulence
    • J.E. Payne Further evidence on modeling wind speed and time-varying turbulence Energy Sour Part A: Recov Utiliz Environ Eff 31 13 2009 1194 1203
    • (2009) Energy Sour Part A: Recov Utiliz Environ Eff , vol.31 , Issue.13 , pp. 1194-1203
    • Payne, J.E.1
  • 19
    • 84862012169 scopus 로고    scopus 로고
    • Modelling and forecasting wind speed intensity for weather risk management
    • in press. doi: 10.1016/j.csda.2010.06.019
    • Caporin M, Preś J. Modelling and forecasting wind speed intensity for weather risk management. Comput Statist Data Anal, in press. doi: 10.1016/j.csda.2010.06.019.
    • Comput Statist Data Anal
    • Caporin M Preś, J.1
  • 20
    • 78149358777 scopus 로고    scopus 로고
    • Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed
    • H. Liu, E. Erdem, and J. Shi Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed Appl Energy 88 3 2011 724 732
    • (2011) Appl Energy , vol.88 , Issue.3 , pp. 724-732
    • Liu, H.1    Erdem, E.2    Shi, J.3
  • 21
    • 84872051208 scopus 로고    scopus 로고
    • An integrated wind power forecasting methodology: Interval estimation of wind speed, operation probability of wind turbine, and conditional expected wind power output of wind farm
    • in press
    • Liu H, Shi J, Erdem E. An integrated wind power forecasting methodology: interval estimation of wind speed, operation probability of wind turbine, and conditional expected wind power output of wind farm. Int J Green Energy, in press. http://dx.doi.org/10.1080/15435075.2011.647170.
    • Int J Green Energy
    • Liu, H.1    Shi, J.2    Erdem, E.3
  • 23
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • T. Bollerslev Generalized autoregressive conditional heteroskedasticity J Econ 31 1986 307 327
    • (1986) J Econ , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 26
    • 0000501656 scopus 로고
    • Information theory and extension of the maximum likelihood principle
    • B.N. Petrov, F. Cszaki, Budapest Akademiai Kiado
    • H. Akaike Information theory and extension of the maximum likelihood principle B.N. Petrov, F. Cszaki, Second international symposium on information theory 1973 Budapest Akademiai Kiado 267 281
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 27
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz Estimating the dimension of a model Ann Statist 6 1978 461 464
    • (1978) Ann Statist , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 28
    • 0017846358 scopus 로고
    • On a measure of lack of fit in time series models
    • G.M. Ljung, and G.E.P. Box On a measure of a lack of fit in time series models Biometrika 65 2 1978 297 303 (Pubitemid 8379490)
    • (1978) Biometrika , vol.65 , Issue.2 , pp. 297-303
    • Ljung, G.M.1    Box, G.E.P.2
  • 29
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom inflation
    • R.F. Engle Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom inflation Econometrica 50 1982 987 1000
    • (1982) Econometrica , vol.50 , pp. 987-1000
    • Engle, R.F.1
  • 31
    • 84871765985 scopus 로고    scopus 로고
    • http://www.middelgrund.com.
  • 32
    • 84860313071 scopus 로고    scopus 로고
    • Comparison of different time series methods for short-term forecasting of wind energy production
    • Phoenix (Arizona); May 2010. CD-ROM
    • Li G, Shi J. Comparison of different time series methods for short-term forecasting of wind energy production. In: Proceedings of ASME 2010, 4th international conference on energy sustainability, Phoenix (Arizona); May 2010. CD-ROM.
    • Proceedings of ASME 2010, 4th International Conference on Energy Sustainability
    • Li, G.1    Shi, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.