메뉴 건너뛰기




Volumn 52, Issue , 2013, Pages 199-203

Prediction of mining subsidence under thin bedrocks and thick unconsolidated layers based on field measurement and artificial neural networks

Author keywords

Artificial neural network; Field measurement; Mining subsidence; Thick unconsolidated layers; Thin bedrocks

Indexed keywords

CHANGE TRENDS; COAL FIELDS; COAL SEAMS; CRACK DEVELOPMENT; DEFORMATION CHARACTERISTICS; FIELD MEASUREMENT; GROUND MOVEMENT; MINING SUBSIDENCE; PREDICTION METHODS; QUANTITATIVE PREDICTION; SURFACE DAMAGES; SURFACE SUBSIDENCE; THICK UNCONSOLIDATED LAYERS; THIN BEDROCK;

EID: 84870673892     PISSN: 00983004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cageo.2012.10.017     Document Type: Article
Times cited : (52)

References (16)
  • 1
    • 0038205400 scopus 로고    scopus 로고
    • Prediction of subsidence due to underground mining by artificial neural networks
    • Ambrožič T., Turk G. Prediction of subsidence due to underground mining by artificial neural networks. Computers and Geosciences 2003, 29:627-637.
    • (2003) Computers and Geosciences , vol.29 , pp. 627-637
    • Ambrožič, T.1    Turk, G.2
  • 2
    • 0036042484 scopus 로고    scopus 로고
    • Research on application of artificial neural network in predicting mining subsidence
    • Cao L.W., Jiang Z.Q. Research on application of artificial neural network in predicting mining subsidence. Journal of China University of Mining and Technologe 2002, 31(1):23-26.
    • (2002) Journal of China University of Mining and Technologe , vol.31 , Issue.1 , pp. 23-26
    • Cao, L.W.1    Jiang, Z.Q.2
  • 3
    • 0025960733 scopus 로고
    • Regional seismic event classification at the noress array: seismological measurements and the use of trained neural networks
    • Dysart P.S., Pulli J.J. Regional seismic event classification at the noress array: seismological measurements and the use of trained neural networks. Bulletin of the Seismological Society of America 1990, 80(6):1910-1933.
    • (1990) Bulletin of the Seismological Society of America , vol.80 , Issue.6 , pp. 1910-1933
    • Dysart, P.S.1    Pulli, J.J.2
  • 4
    • 0033043809 scopus 로고    scopus 로고
    • Using neural networks to discriminate between genuine and spurious seismic events in mines
    • Finnie G.J. Using neural networks to discriminate between genuine and spurious seismic events in mines. Pure and Applied Geophysics 1999, 154(1):41-56.
    • (1999) Pure and Applied Geophysics , vol.154 , Issue.1 , pp. 41-56
    • Finnie, G.J.1
  • 8
    • 0003889538 scopus 로고    scopus 로고
    • Artificial neural networks for civil engineers, fundamentals and applications
    • Kartam N., Flood L. Artificial neural networks for civil engineers, fundamentals and applications. American Society of Civil Engineers 1997, 216.
    • (1997) American Society of Civil Engineers , pp. 216
    • Kartam, N.1    Flood, L.2
  • 10
    • 84871486662 scopus 로고
    • The prediction of neural network to surface subsidence in mining
    • Ma F.H., Yang F. The prediction of neural network to surface subsidence in mining. Chinese Journal of Geological Hazard and Control 1995, 12(3):84-87.
    • (1995) Chinese Journal of Geological Hazard and Control , vol.12 , Issue.3 , pp. 84-87
    • Ma, F.H.1    Yang, F.2
  • 11
    • 0030518733 scopus 로고    scopus 로고
    • Discrimination between local microearthquakes and quarry blasts by multi-layer perceptrons and Kohonen maps
    • Musil M., Plesinger A. Discrimination between local microearthquakes and quarry blasts by multi-layer perceptrons and Kohonen maps. Bulletin of the Seismological Society of America 1996, 86(4):1077-1090.
    • (1996) Bulletin of the Seismological Society of America , vol.86 , Issue.4 , pp. 1077-1090
    • Musil, M.1    Plesinger, A.2
  • 13
    • 0002520528 scopus 로고
    • A general framework for parallel distribution processing
    • MIT Press, Cambridge, MA
    • Rumelhart D.E., Hinton G.E., McClelland J.L. A general framework for parallel distribution processing. Parallel Distribution Processing 1986, vol. 1:45-76. MIT Press, Cambridge, MA.
    • (1986) Parallel Distribution Processing , vol.1 , pp. 45-76
    • Rumelhart, D.E.1    Hinton, G.E.2    McClelland, J.L.3
  • 14
    • 30044445993 scopus 로고    scopus 로고
    • Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling
    • Suwansawat S., Einstein H.H. Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling. Tunnelling and Underground Space Technology 2006, 21:133-150.
    • (2006) Tunnelling and Underground Space Technology , vol.21 , pp. 133-150
    • Suwansawat, S.1    Einstein, H.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.