메뉴 건너뛰기




Volumn , Issue , 2009, Pages 499-518

Software cost estimation using soft computing approaches

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84870563022     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4018/978-1-60566-766-9.ch024     Document Type: Chapter
Times cited : (23)

References (45)
  • 1
    • 0014629731 scopus 로고
    • The combination of forecasts
    • doi:10.1057/jors.1969.103
    • Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. Operational Research Quarterly, 20, 451-468. doi:10.1057/jors.1969.103
    • (1969) Operational Research Quarterly , vol.20 , pp. 451-468
    • Bates, J.M.1    Granger, C.W.J.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 84898324736 scopus 로고    scopus 로고
    • CART, Retrieved from
    • CART. (2009). Salford Systems Inc. Retrieved from http://www.salford-systems.com
    • (2009) Salford Systems Inc
  • 6
    • 45249128876 scopus 로고
    • Combining forecasts: A review & annotated bibliography with discussion
    • doi:10.1016/0169-2070(89)90012-5
    • Clemen, R. (1989). Combining forecasts: A review & annotated bibliography with discussion. International Journal of Forecasting, 5, 559-608. doi:10.1016/0169-2070(89)90012-5
    • (1989) International Journal of Forecasting , vol.5 , pp. 559-608
    • Clemen, R.1
  • 8
    • 0030577310 scopus 로고    scopus 로고
    • What are fuzzy rules and how to use them
    • doi:10.1016/0165-0114(96)00066-8
    • Dubois, D., & Prade, H. (1996). What are fuzzy rules and how to use them. Fuzzy Sets and Systems, 84, 169-185. doi:10.1016/0165-0114(96)00066-8
    • (1996) Fuzzy Sets and Systems , vol.84 , pp. 169-185
    • Dubois, D.1    Prade, H.2
  • 9
    • 25144482720 scopus 로고
    • Threshold accepting: A general-purpose optimization algorithm appearing superior to simulated annealing
    • doi:10.1016/00219991(90)90201-B
    • Dueck, G., & Scheuer, T. (1990). Threshold accepting: A general-purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 90(1), 161-175. doi:10.1016/00219991(90)90201-B
    • (1990) Journal of Computational Physics , vol.90 , Issue.1 , pp. 161-175
    • Dueck, G.1    Scheuer, T.2
  • 11
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • doi:10.1214/aos/1176347963
    • Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). Annals of Statistics, 19, 1-141. doi:10.1214/aos/1176347963
    • (1991) Annals of Statistics , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 12
    • 0026375443 scopus 로고
    • The pi-sigma networks: An efficient higher-order neural network for pattern classification and function approximation
    • In, Seattle, Washington
    • Ghosh, J., & Shin, Y. (1991). The pi-sigma networks: An efficient higher-order neural network for pattern classification and function approximation. In Proceedings of the International Joint Conference on Neural Networks, Seattle, Washington (pp. 13-18).
    • (1991) Proceedings of the International Joint Conference on Neural Networks , pp. 13-18
    • Ghosh, J.1    Shin, Y.2
  • 14
    • 0038535018 scopus 로고    scopus 로고
    • A simulation-based comparison of empirical modeling techniques for software metric models of development effort
    • In, Washington, DC: IEEE
    • Gray, A. R. (1999). A simulation-based comparison of empirical modeling techniques for software metric models of development effort. In Proceedings of the International Conference on Neural Information Processing (pp. 526-531). Washington, DC: IEEE.
    • (1999) Proceedings of the International Conference on Neural Information Processing , pp. 526-531
    • Gray, A.R.1
  • 15
    • 84985773782 scopus 로고
    • Artificial intelligence and generalized qualitative response models: An empirical test on two audit decision-making domains
    • doi:10.1111/j.1540-5915.1992.tb00413.x
    • Hansen, J., McDonald, J., & Slice, J. (1992). Artificial intelligence and generalized qualitative response models: An empirical test on two audit decision-making domains. Decision Sciences, 23, 708-723. doi:10.1111/j.1540-5915.1992.tb00413.x
    • (1992) Decision Sciences , vol.23 , pp. 708-723
    • Hansen, J.1    McDonald, J.2    Slice, J.3
  • 18
    • 0029357292 scopus 로고
    • Experience with accuracy of software maintenance task effort prediction models
    • doi:10.1109/32.403791
    • Jorgensen, M. (1995). Experience with accuracy of software maintenance task effort prediction models. IEEE Transactions on Software Engineering, 21(8), 674-681. doi:10.1109/32.403791
    • (1995) IEEE Transactions on Software Engineering , vol.21 , Issue.8 , pp. 674-681
    • Jorgensen, M.1
  • 19
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • doi:10.1109/91.995117
    • Kasabov, N. K., & Song, Q. (2002). DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE transactions on Fuzzy Systems, 10(2), 144-154. doi:10.1109/91.995117
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 21
    • 84984426556 scopus 로고
    • The accuracy of extrapolation (time series) methods: Results of a forecasting competition
    • doi:10.1002/for.3980010202
    • Makridakis, S., Anderson, A., Carbone, R., Fildes, R., Hibdon, M., & Lewandowski, R. (1982). The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of Forecasting, 1, 111-153. doi:10.1002/for.3980010202
    • (1982) Journal of Forecasting , vol.1 , pp. 111-153
    • Makridakis, S.1    Anderson, A.2    Carbone, R.3    Fildes, R.4    Hibdon, M.5    Lewandowski, R.6
  • 22
    • 0028516893 scopus 로고
    • Robust regression for developing software estimation models
    • doi:10.1016/0164-1212(94)90110-4
    • Miyazaki, Y., Terakado, M., Ozaki, K., & Nozaki, N. (1994). Robust regression for developing software estimation models. Journal of Systems and Software, 27(1), 3-16. doi:10.1016/0164-1212(94)90110-4
    • (1994) Journal of Systems and Software , vol.27 , Issue.1 , pp. 3-16
    • Miyazaki, Y.1    Terakado, M.2    Ozaki, K.3    Nozaki, N.4
  • 23
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • doi:10.1162/neco.1989.1.2.281
    • Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally tuned processing units. Neural Computation, 1(2), 281-294. doi:10.1162/neco.1989.1.2.281
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 24
    • 0001513279 scopus 로고
    • Power consumption in west-bohemia: Improved forecasts decorrelating connectionist networks
    • Pelikan, E., De Groot, C., & Wurtz, D. (1992). Power consumption in West-Bohemia: Improved forecasts decorrelating connectionist networks. Neural Network World, 2(6), 701-712.
    • (1992) Neural Network World , vol.2 , Issue.6 , pp. 701-712
    • Pelikan, E.1    de Groot, C.2    Wurtz, D.3
  • 25
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • In R. J. Mammone (Ed.), Boca Raton, FL: Chapman Hall
    • Perrone, M. P., & Cooper, L. N. (1993). When networks disagree: Ensemble methods for hybrid neural networks. In R. J. Mammone (Ed.), Neural networks foe speech and image processing (pp. 126-142). Boca Raton, FL: Chapman Hall.
    • (1993) Neural Networks Foe Speech and Image Processing , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 27
    • 40049111990 scopus 로고    scopus 로고
    • Forecasting the properties of carboxylic acids by a threshold accepting-trained neural network
    • Ravi, V., Murty, B. S. N., & Dutt, N. V. K. (2005). Forecasting the properties of carboxylic acids by a threshold accepting-trained neural network. Indian Chemical Engineer, 47(3), 147-151.
    • (2005) Indian Chemical Engineer , vol.47 , Issue.3 , pp. 147-151
    • Ravi, V.1    Murty, B.S.N.2    Dutt, N.V.K.3
  • 28
    • 34548483523 scopus 로고    scopus 로고
    • A neural network and fuzzy rule base hybrid for pattern classification
    • doi:10.1007/s005000000071
    • Ravi, V., & Zimmermann, H. J. (2001). A neural network and fuzzy rule base hybrid for pattern classification. Soft Computing, 5(2), 152-159. doi:10.1007/s005000000071
    • (2001) Soft Computing , vol.5 , Issue.2 , pp. 152-159
    • Ravi, V.1    Zimmermann, H.J.2
  • 34
    • 0026254768 scopus 로고
    • A general regression neural network
    • doi:10.1109/72.97934
    • Specht, D. F. (1991). A general regression neural network. IEEE Transactions on Neural Networks, 2(6), 568-576. doi:10.1109/72.97934
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 35
    • 0029255026 scopus 로고
    • Machine learning approaches to estimating software development effort
    • doi:10.1109/32.345828
    • Srinivasan, K., & Fisher, D. (1995). Machine learning approaches to estimating software development effort. IEEE Transactions on Software Engineering, 21(2), 126-136. doi:10.1109/32.345828
    • (1995) IEEE Transactions on Software Engineering , vol.21 , Issue.2 , pp. 126-136
    • Srinivasan, K.1    Fisher, D.2
  • 38
    • 52049116923 scopus 로고    scopus 로고
    • Software development cost estimation using wavelet neural networks
    • doi:10.1016/j.jss.2007.12.793
    • Vinaykumar, K., Ravi, V., Carr, M., & Raj Kiran, N. (2008). Software development cost estimation using wavelet neural networks. Journal of Systems and Software, 81(11), 1853-1867. doi:10.1016/j.jss.2007.12.793
    • (2008) Journal of Systems and Software , vol.81 , Issue.11 , pp. 1853-1867
    • Vinaykumar, K.1    Ravi, V.2    Carr, M.3    Raj Kiran, N.4
  • 40
    • 0031187569 scopus 로고    scopus 로고
    • Estimating software development effort with connectionist models
    • doi:10.1016/S0950-5849(97)00004-9
    • Wittig, G., & Finnie, G. (1997). Estimating software development effort with connectionist models. Information and Software Technology, 39, 469-476. doi:10.1016/S0950-5849(97)00004-9
    • (1997) Information and Software Technology , vol.39 , pp. 469-476
    • Wittig, G.1    Finnie, G.2
  • 41
    • 2642569409 scopus 로고    scopus 로고
    • Identification of fuzzy models cost estimation
    • doi:10.1016/j.fss.2003.10.008
    • Xu, Z., & Khoshgoftaar, T. M. (2004). Identification of fuzzy models cost estimation. Fuzzy Sets and Systems, 145, 141-163. doi:10.1016/j.fss.2003.10.008
    • (2004) Fuzzy Sets and Systems , vol.145 , pp. 141-163
    • Xu, Z.1    Khoshgoftaar, T.M.2
  • 42
    • 13544270843 scopus 로고    scopus 로고
    • A novel non-linear ensemble-forecasting model incorporating GLAR and ANN for foreign exchange rates
    • doi:10.1016/j.cor.2004.06.024
    • Yu, L., Wang, S. Y., & Lai, K. K. (2005). A novel non-linear ensemble-forecasting model incorporating GLAR and ANN for foreign exchange rates. Computers & Operations Research, 32(10), 2523-2541. doi:10.1016/j.cor.2004.06.024
    • (2005) Computers & Operations Research , vol.32 , Issue.10 , pp. 2523-2541
    • Yu, L.1    Wang, S.Y.2    Lai, K.K.3
  • 43
    • 0002467406 scopus 로고
    • The calculus of fuzzy if-then rules
    • Zadeh, L. A. (1992). The calculus of fuzzy if-then rules. AI Expert, 7(3), 23-27.
    • (1992) AI Expert , vol.7 , Issue.3 , pp. 23-27
    • Zadeh, L.A.1
  • 44
    • 0028534525 scopus 로고
    • Soft computing and fuzzy logic
    • doi:10.1109/52.329401
    • Zadeh, L. A. (1994). Soft computing and fuzzy logic. IEEE Software, 11(6), 48-56. doi:10.1109/52.329401
    • (1994) IEEE Software , vol.11 , Issue.6 , pp. 48-56
    • Zadeh, L.A.1
  • 45
    • 0003123776 scopus 로고    scopus 로고
    • Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems
    • doi:10.1007/s005000050030
    • Zadeh, L. A. (1998). Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Computing, 2(1), 23-25. doi:10.1007/s005000050030
    • (1998) Soft Computing , vol.2 , Issue.1 , pp. 23-25
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.