-
2
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Pittsburgh, PA, USA
-
Boser B, Guyon I, Vapnik V, A training algorithm for optimal margin classifiers. In: Proceeding COLT '92 proceedings of the fifth annual workshop on computational learning, Pittsburgh, PA, USA; 1992. p. 144-52.
-
(1992)
Proceeding COLT '92 Proceedings of the Fifth Annual Workshop on Computational Learning
, pp. 144-152
-
-
Boser, B.1
Guyon, I.2
Vapnik, V.3
-
4
-
-
0003425662
-
Support vector machines, training and applications
-
CBCL-144
-
Osuna E, Freund R, Girosi F. Support vector machines, training and applications. Artificial Intelligence Laboratory, MIT Press, Series, Report, AIM-1602, CBCL-144, 1997.
-
(1997)
Artificial Intelligence Laboratory, MIT Press, Series, Report, AIM-1602
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
6
-
-
0242288813
-
The support vector machines under test
-
D. Meyer, F. Leisch, and K. Hornik The support vector machines under test Neurocomputing 55 2003 169 186
-
(2003)
Neurocomputing
, vol.55
, pp. 169-186
-
-
Meyer, D.1
Leisch, F.2
Hornik, K.3
-
7
-
-
33845423521
-
-
Springer-Verlag Berlin, Heidelberg
-
T.M. Huang, V. Kecman, and I. Kopriva Kernel based algorithms for mining huge data sets, supervised, semi-supervised and unsupervised learning 2006 Springer-Verlag Berlin, Heidelberg
-
(2006)
Kernel Based Algorithms for Mining Huge Data Sets, Supervised, Semi-supervised and Unsupervised Learning
-
-
Huang, T.M.1
Kecman, V.2
Kopriva, I.3
-
9
-
-
34249753618
-
Support vector networks
-
C. Cortes, and V. Vapnik Support vector networks Mach Learn 20 1995 273 297
-
(1995)
Mach Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
10
-
-
0003893955
-
-
PhD dissertation, Technical University, Berlin, Germany; 1997
-
Schölkopf B. Support vector learning, PhD dissertation, Technical University, Berlin, Germany
-
(1997)
Support Vector Learning
-
-
Schölkopf, B.1
-
11
-
-
80053185397
-
A novel local network intrusion detection system based on support vector machine
-
N. Mohammad Muamer, Sulaiman Norrozila, and Khalaf T. Emad A novel local network intrusion detection system based on support vector machine J Comput Sci 7 2011 1560 1564
-
(2011)
J Comput Sci
, vol.7
, pp. 1560-1564
-
-
Mohammad Muamer, N.1
Norrozila, S.2
Emad, K.T.3
-
12
-
-
84887252594
-
Support vector method for function approximation. Regression estimation and signal processing
-
Vapnik V, Golowich S, Smola A. Support vector method for function approximation. Regression estimation and signal processing. In: Advances in neural information processing systems, vol. 9, no. 9, 1997. p. 281-7.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, Issue.9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
-
14
-
-
14344256585
-
Incorporating invariances in non-linear support vector machines
-
Chapelle O, Schölkopf B. Incorporating invariances in non-linear support vector machines. In: Proc. NIPS; 2001. p. 609-16.
-
(2001)
Proc. NIPS
, pp. 609-616
-
-
Chapelle, O.1
Schölkopf, B.2
-
16
-
-
21844440579
-
Core vector machines: Fast SVMs training on very large data sets
-
I.W. Tsang, J.T. Kwok, and P.M. Cheung Core vector machines: fast SVMs training on very large data sets J Mach Learn Res 6 2005 271 363
-
(2005)
J Mach Learn Res
, vol.6
, pp. 271-363
-
-
Tsang, I.W.1
Kwok, J.T.2
Cheung, P.M.3
-
20
-
-
17144429687
-
Feature space interpretation of SVMs with indefinite kernels
-
B. Haasdonk Feature space interpretation of SVMs with indefinite kernels IEEE Trans Pattern Anal Mach Intell 27 4 2005 482 492
-
(2005)
IEEE Trans Pattern Anal Mach Intell
, vol.27
, Issue.4
, pp. 482-492
-
-
Haasdonk, B.1
-
21
-
-
0036505670
-
A comparison of methods for multi-class support vector machines
-
T. Hastie, C.W. Hsu, and C.J. Lin A comparison of methods for multi-class support vector machines IEEE Trans Neural Networks 13 2005 415 425
-
(2005)
IEEE Trans Neural Networks
, vol.13
, pp. 415-425
-
-
Hastie, T.1
Hsu, C.W.2
Lin, C.J.3
-
22
-
-
84870551679
-
Improving the accuracy of support vector machines via a new kernel functions
-
E.A. Zanaty, A. Afifi, and R.E. Khateeb Improving the accuracy of support vector machines via a new kernel functions Int J Intell Comput Sci 1 2009 55 67
-
(2009)
Int J Intell Comput Sci
, vol.1
, pp. 55-67
-
-
Zanaty, E.A.1
Afifi, A.2
Khateeb, R.E.3
-
24
-
-
80052842512
-
A comparative study in classification techniques for unsupervised record linkage model
-
Mohammadreza Ektefa, Fatimah Sidi, Hamidah Ibrahim, Marzanah Jabar, and Sara Memar A comparative study in classification techniques for unsupervised record linkage model J Comput Sci 7 2011 341 347
-
(2011)
J Comput Sci
, vol.7
, pp. 341-347
-
-
Ektefa, M.1
Sidi, F.2
Ibrahim, H.3
Jabar, M.4
Memar, S.5
-
25
-
-
80053089870
-
A novel linear-polynomial kernel to construct support vector machines for speech recognition
-
Balwant A. Sonkamble, and D. Doye A novel linear-polynomial kernel to construct support vector machines for speech recognition J Comput Sci 7 2011 991 996
-
(2011)
J Comput Sci
, vol.7
, pp. 991-996
-
-
Sonkamble, B.A.1
Doye, D.2
-
26
-
-
79961234710
-
Support vector machine (SVMs) with universal kernel
-
E.A. Zanaty, and A. Afifi Support vector machine (SVMs) with universal kernel Appl Artif. Intell. 25 7 2011 575 589
-
(2011)
Appl Artif. Intell.
, vol.25
, Issue.7
, pp. 575-589
-
-
Zanaty, E.A.1
Afifi, A.2
-
27
-
-
1942517317
-
Fast query optimized kernel machine classification via incremental approximate nearest support vectors
-
Washington, ICML 2003
-
DeCoste D, Mazzoni D. Fast query optimized kernel machine classification via incremental approximate nearest support vectors. In: Proceedings of the 20th international conference on machine learning, Washington, ICML 2003; 2003. p. 115-22.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning
, pp. 115-122
-
-
Decoste, D.1
Mazzoni, D.2
-
29
-
-
0032594954
-
Input space versus feature space in kernel-based methods
-
B.S. Schölkopf, C.J. Mika, P. Burges, R.R. Knirsch, and K.G. Muller Input space versus feature space in kernel-based methods IEEE Trans Neural Network 10 5 1999 1000 1017
-
(1999)
IEEE Trans Neural Network
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Schölkopf, B.S.1
Mika, C.J.2
Burges, P.3
Knirsch, R.R.4
Muller, K.G.5
-
30
-
-
84898957872
-
Improving the accuracy and speed of support vector machines
-
C.J. Burges, and B. Schölkopf Improving the accuracy and speed of support vector machines Neural Inform Proc Syst 9 1997 375 381
-
(1997)
Neural Inform Proc Syst
, vol.9
, pp. 375-381
-
-
Burges, C.J.1
Schölkopf, B.2
-
31
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C.J. Burges A tutorial on support vector machines for pattern recognition Data Min Knowledge Discovery 2 2 1998 121 167
-
(1998)
Data Min Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.1
-
37
-
-
84870503686
-
-
http://archive.ics.uci.edu/ml/.
-
-
-
-
40
-
-
0034241361
-
Gradient-based optimization of hyper-parameters
-
Y. Bengio Gradient-based optimization of hyper-parameters Neural Comput 12 8 2000 1889 1900
-
(2000)
Neural Comput
, vol.12
, Issue.8
, pp. 1889-1900
-
-
Bengio, Y.1
-
41
-
-
56749117943
-
In defense of one vs. all classification
-
R. Rifin, and A. Klautau In defense of one vs. all classification J Mach Learn Res 5 2004 101 141
-
(2004)
J Mach Learn Res
, vol.5
, pp. 101-141
-
-
Rifin, R.1
Klautau, A.2
|