메뉴 건너뛰기




Volumn 13, Issue 3, 2012, Pages 177-183

Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in data classification

Author keywords

Kernel functions; Neural networks; Quadratic Programming (QP); Support vector machine

Indexed keywords

CLASSIFICATION (OF INFORMATION); MULTILAYER NEURAL NETWORKS; MULTILAYERS; NETWORK LAYERS; NEURAL NETWORKS; QUADRATIC PROGRAMMING; RADIAL BASIS FUNCTION NETWORKS; VECTORS;

EID: 84870517789     PISSN: 11108665     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eij.2012.08.002     Document Type: Article
Times cited : (136)

References (41)
  • 6
    • 0242288813 scopus 로고    scopus 로고
    • The support vector machines under test
    • D. Meyer, F. Leisch, and K. Hornik The support vector machines under test Neurocomputing 55 2003 169 186
    • (2003) Neurocomputing , vol.55 , pp. 169-186
    • Meyer, D.1    Leisch, F.2    Hornik, K.3
  • 9
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, and V. Vapnik Support vector networks Mach Learn 20 1995 273 297
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 0003893955 scopus 로고    scopus 로고
    • PhD dissertation, Technical University, Berlin, Germany; 1997
    • Schölkopf B. Support vector learning, PhD dissertation, Technical University, Berlin, Germany
    • (1997) Support Vector Learning
    • Schölkopf, B.1
  • 11
    • 80053185397 scopus 로고    scopus 로고
    • A novel local network intrusion detection system based on support vector machine
    • N. Mohammad Muamer, Sulaiman Norrozila, and Khalaf T. Emad A novel local network intrusion detection system based on support vector machine J Comput Sci 7 2011 1560 1564
    • (2011) J Comput Sci , vol.7 , pp. 1560-1564
    • Mohammad Muamer, N.1    Norrozila, S.2    Emad, K.T.3
  • 12
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation. Regression estimation and signal processing
    • Vapnik V, Golowich S, Smola A. Support vector method for function approximation. Regression estimation and signal processing. In: Advances in neural information processing systems, vol. 9, no. 9, 1997. p. 281-7.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , Issue.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 14
    • 14344256585 scopus 로고    scopus 로고
    • Incorporating invariances in non-linear support vector machines
    • Chapelle O, Schölkopf B. Incorporating invariances in non-linear support vector machines. In: Proc. NIPS; 2001. p. 609-16.
    • (2001) Proc. NIPS , pp. 609-616
    • Chapelle, O.1    Schölkopf, B.2
  • 16
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast SVMs training on very large data sets
    • I.W. Tsang, J.T. Kwok, and P.M. Cheung Core vector machines: fast SVMs training on very large data sets J Mach Learn Res 6 2005 271 363
    • (2005) J Mach Learn Res , vol.6 , pp. 271-363
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.M.3
  • 17
    • 9244258603 scopus 로고    scopus 로고
    • The pre-image problem in kernel method
    • J.T. Kwok, and I.W. Tsang The pre-image problem in kernel method IEEE Trans Neural Networks 15 2004 1517 1525
    • (2004) IEEE Trans Neural Networks , vol.15 , pp. 1517-1525
    • Kwok, J.T.1    Tsang, I.W.2
  • 20
    • 17144429687 scopus 로고    scopus 로고
    • Feature space interpretation of SVMs with indefinite kernels
    • B. Haasdonk Feature space interpretation of SVMs with indefinite kernels IEEE Trans Pattern Anal Mach Intell 27 4 2005 482 492
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.4 , pp. 482-492
    • Haasdonk, B.1
  • 21
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • T. Hastie, C.W. Hsu, and C.J. Lin A comparison of methods for multi-class support vector machines IEEE Trans Neural Networks 13 2005 415 425
    • (2005) IEEE Trans Neural Networks , vol.13 , pp. 415-425
    • Hastie, T.1    Hsu, C.W.2    Lin, C.J.3
  • 22
    • 84870551679 scopus 로고    scopus 로고
    • Improving the accuracy of support vector machines via a new kernel functions
    • E.A. Zanaty, A. Afifi, and R.E. Khateeb Improving the accuracy of support vector machines via a new kernel functions Int J Intell Comput Sci 1 2009 55 67
    • (2009) Int J Intell Comput Sci , vol.1 , pp. 55-67
    • Zanaty, E.A.1    Afifi, A.2    Khateeb, R.E.3
  • 23
    • 79961243913 scopus 로고    scopus 로고
    • Accurate support vector machines for data classification
    • E.A. Zanaty, S. Aljahdali, and R.J. Cripps Accurate support vector machines for data classification Int J Rapid Manuf 1 2 2009
    • (2009) Int J Rapid Manuf , vol.1 , Issue.2
    • Zanaty, E.A.1    Aljahdali, S.2    Cripps, R.J.3
  • 24
    • 80052842512 scopus 로고    scopus 로고
    • A comparative study in classification techniques for unsupervised record linkage model
    • Mohammadreza Ektefa, Fatimah Sidi, Hamidah Ibrahim, Marzanah Jabar, and Sara Memar A comparative study in classification techniques for unsupervised record linkage model J Comput Sci 7 2011 341 347
    • (2011) J Comput Sci , vol.7 , pp. 341-347
    • Ektefa, M.1    Sidi, F.2    Ibrahim, H.3    Jabar, M.4    Memar, S.5
  • 25
    • 80053089870 scopus 로고    scopus 로고
    • A novel linear-polynomial kernel to construct support vector machines for speech recognition
    • Balwant A. Sonkamble, and D. Doye A novel linear-polynomial kernel to construct support vector machines for speech recognition J Comput Sci 7 2011 991 996
    • (2011) J Comput Sci , vol.7 , pp. 991-996
    • Sonkamble, B.A.1    Doye, D.2
  • 26
    • 79961234710 scopus 로고    scopus 로고
    • Support vector machine (SVMs) with universal kernel
    • E.A. Zanaty, and A. Afifi Support vector machine (SVMs) with universal kernel Appl Artif. Intell. 25 7 2011 575 589
    • (2011) Appl Artif. Intell. , vol.25 , Issue.7 , pp. 575-589
    • Zanaty, E.A.1    Afifi, A.2
  • 27
    • 1942517317 scopus 로고    scopus 로고
    • Fast query optimized kernel machine classification via incremental approximate nearest support vectors
    • Washington, ICML 2003
    • DeCoste D, Mazzoni D. Fast query optimized kernel machine classification via incremental approximate nearest support vectors. In: Proceedings of the 20th international conference on machine learning, Washington, ICML 2003; 2003. p. 115-22.
    • (2003) Proceedings of the 20th International Conference on Machine Learning , pp. 115-122
    • Decoste, D.1    Mazzoni, D.2
  • 30
    • 84898957872 scopus 로고    scopus 로고
    • Improving the accuracy and speed of support vector machines
    • C.J. Burges, and B. Schölkopf Improving the accuracy and speed of support vector machines Neural Inform Proc Syst 9 1997 375 381
    • (1997) Neural Inform Proc Syst , vol.9 , pp. 375-381
    • Burges, C.J.1    Schölkopf, B.2
  • 31
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J. Burges A tutorial on support vector machines for pattern recognition Data Min Knowledge Discovery 2 2 1998 121 167
    • (1998) Data Min Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.1
  • 37
    • 84870503686 scopus 로고    scopus 로고
    • http://archive.ics.uci.edu/ml/.
  • 39
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee Choosing multiple parameters for support vector machines Mach Learn 46 2002 131 159
    • (2002) Mach Learn , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 40
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyper-parameters
    • Y. Bengio Gradient-based optimization of hyper-parameters Neural Comput 12 8 2000 1889 1900
    • (2000) Neural Comput , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 41
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one vs. all classification
    • R. Rifin, and A. Klautau In defense of one vs. all classification J Mach Learn Res 5 2004 101 141
    • (2004) J Mach Learn Res , vol.5 , pp. 101-141
    • Rifin, R.1    Klautau, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.