메뉴 건너뛰기




Volumn 103, Issue 11, 2012, Pages 2275-2286

MCMC can detect nonidentifiable models

Author keywords

[No Author keywords available]

Indexed keywords

ION CHANNEL;

EID: 84870513591     PISSN: 00063495     EISSN: 15420086     Source Type: Journal    
DOI: 10.1016/j.bpj.2012.10.024     Document Type: Article
Times cited : (82)

References (22)
  • 1
    • 0024566934 scopus 로고
    • Equivalence of aggregated Markov models of ion-channel gating
    • P. Kienker Equivalence of aggregated Markov models of ion-channel gating Proc. R. Soc. Lond. B Biol. Sci. 236 1989 269 309
    • (1989) Proc. R. Soc. Lond. B Biol. Sci. , vol.236 , pp. 269-309
    • Kienker, P.1
  • 2
    • 0000410009 scopus 로고
    • Identification of aggregated Markovian models: Application to the nicotinic acetylcholine receptor
    • L. M. L. Cam and R. A. Olshen, editors. Wadsworth, Belmont, CA
    • Fredkin, D. R., M. Montal, and J. A. Rice. 1985. Identification of aggregated Markovian models: application to the nicotinic acetylcholine receptor. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. 1. L. M. L. Cam and R. A. Olshen, editors. Wadsworth, Belmont, CA. 269-289.
    • (1985) Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer , vol.1 , pp. 269-289
    • Fredkin, D.R.1    Montal, M.2    Rice, J.A.3
  • 3
    • 0000587771 scopus 로고
    • On aggregated Markov processes
    • D.R. Fredkin, and J.A. Rice On aggregated Markov processes J. Appl. Probab. 23 1986 208 214
    • (1986) J. Appl. Probab. , vol.23 , pp. 208-214
    • Fredkin, D.R.1    Rice, J.A.2
  • 4
    • 18144410993 scopus 로고    scopus 로고
    • Using independent open-to-closed transitions to simplify aggregated Markov models of ion channel gating kinetics
    • W.J. Bruno, J. Yang, and J.E. Pearson Using independent open-to-closed transitions to simplify aggregated Markov models of ion channel gating kinetics Proc. Natl. Acad. Sci. USA 102 2005 6326 6331
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 6326-6331
    • Bruno, W.J.1    Yang, J.2    Pearson, J.E.3
  • 6
    • 0004160361 scopus 로고    scopus 로고
    • Markov chain Monte Carlo: Stochastic simulation for Bayesian inference
    • 2nd Ed. Taylor & Francis Boca Raton, FL
    • D. Gamerman, and H.F. Lopes Markov chain Monte Carlo: stochastic simulation for Bayesian inference Vol. 68, Texts in Statistical Science 2nd Ed. 2006 Taylor & Francis Boca Raton, FL
    • (2006) Vol. 68, Texts in Statistical Science
    • Gamerman, D.1    Lopes, H.F.2
  • 7
    • 0030061670 scopus 로고    scopus 로고
    • Estimating Single-Channel Kinetic Paramenters from Idealized Patch-Clamp Data Containing Missed Events
    • F. Qin, A. Auerbach, and F. Sachs Estimating Single-Channel Kinetic Paramenters from Idealized Patch-Clamp Data Containing Missed Events Biophys. J. 70 1996 264 280
    • (1996) Biophys. J. , vol.70 , pp. 264-280
    • Qin, F.1    Auerbach, A.2    Sachs, F.3
  • 8
    • 0030956174 scopus 로고    scopus 로고
    • Maximum likelihood estimation of aggregated Markov processes
    • F. Qin, A. Auerbach, and F. Sachs Maximum likelihood estimation of aggregated Markov processes Proc. Biol. Sci. 264 1997 375 383
    • (1997) Proc. Biol. Sci. , vol.264 , pp. 375-383
    • Qin, F.1    Auerbach, A.2    Sachs, F.3
  • 9
    • 79959753998 scopus 로고    scopus 로고
    • MCMC estimation of Markov models for ion channels
    • I. Siekmann, and L.E. Wagner II J. Sneyd MCMC estimation of Markov models for ion channels Biophys. J. 100 2011 1919 1929
    • (2011) Biophys. J. , vol.100 , pp. 1919-1929
    • Siekmann, I.1    Wagner, I.I.L.E.2    Sneyd, J.3
  • 10
    • 0000193853 scopus 로고
    • On Gibbs sampling for state space models
    • C.K. Carter, and R. Kohn On Gibbs sampling for state space models Biometrika 81 1994 541 553
    • (1994) Biometrika , vol.81 , pp. 541-553
    • Carter, C.K.1    Kohn, R.2
  • 11
    • 5744249209 scopus 로고
    • Equation of state calculations by fast computing machines
    • N. Metropolis, and A.W. Rosenbluth E. Teller Equation of state calculations by fast computing machines J. Chem. Phys. 21 1953 1087 1092
    • (1953) J. Chem. Phys. , vol.21 , pp. 1087-1092
    • Metropolis, N.1    Rosenbluth, A.W.2    Teller, E.3
  • 12
    • 77956890234 scopus 로고
    • Monte-Carlo sampling methods using Markov chains and their applications
    • W.K. Hastings Monte-Carlo sampling methods using Markov chains and their applications Biometrika 57 1970 97 109
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 13
    • 78449235493 scopus 로고    scopus 로고
    • A general purpose sampling algorithm for continuous distributions (the T-walk)
    • J.A. Christen, and C. Fox A general purpose sampling algorithm for continuous distributions (the T-walk) Bayesian Anal. 5 2010 263 282
    • (2010) Bayesian Anal. , vol.5 , pp. 263-282
    • Christen, J.A.1    Fox, C.2
  • 14
    • 61449197652 scopus 로고    scopus 로고
    • Markov chain Monte Carlo fitting of single-channel data from inositol trisphosphate receptors
    • E. Gin, and M. Falcke J. Sneyd Markov chain Monte Carlo fitting of single-channel data from inositol trisphosphate receptors J. Theor. Biol. 257 2009 460 474
    • (2009) J. Theor. Biol. , vol.257 , pp. 460-474
    • Gin, E.1    Falcke, M.2    Sneyd, J.3
  • 15
    • 0032390087 scopus 로고    scopus 로고
    • A canonical representation for aggregated Markov processes
    • B. Larget A canonical representation for aggregated Markov processes J. Appl. Probab. 35 1998 313 324
    • (1998) J. Appl. Probab. , vol.35 , pp. 313-324
    • Larget, B.1
  • 17
    • 22544479764 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
    • A. Jasra, C.C. Holmes, and D.A. Stephens Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling Stat. Sci. 20 2005 50 67
    • (2005) Stat. Sci. , vol.20 , pp. 50-67
    • Jasra, A.1    Holmes, C.C.2    Stephens, D.A.3
  • 18
    • 0000108918 scopus 로고    scopus 로고
    • Bayesian inference for ion-channel gating mechanisms directly from single-channel recordings, using Markov chain Monte Carlo
    • F.G. Ball, and Y. Cai A. O'Hagan Bayesian inference for ion-channel gating mechanisms directly from single-channel recordings, using Markov chain Monte Carlo Proc. R. Soc. Lond. A 455 1999 2879 2932
    • (1999) Proc. R. Soc. Lond. A , vol.455 , pp. 2879-2932
    • Ball, F.G.1    Cai, Y.2    O'Hagan, A.3
  • 21
    • 33746385384 scopus 로고    scopus 로고
    • Bayesian choice among Markov models of ion channels using Markov chain Monte Carlo
    • M. Hodgson, and P. Green Bayesian choice among Markov models of ion channels using Markov chain Monte Carlo Proc. Roy. Soc. London A Math. Phys. Eng. Sci. 455 1999 3425 3448
    • (1999) Proc. Roy. Soc. London A Math. Phys. Eng. Sci. , vol.455 , pp. 3425-3448
    • Hodgson, M.1    Green, P.2
  • 22
    • 33746610940 scopus 로고    scopus 로고
    • Utilizing the information content in two-state trajectories
    • O. Flomenbom, and R.J. Silbey Utilizing the information content in two-state trajectories Proc. Natl. Acad. Sci. USA 103 2006 10907 10910
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 10907-10910
    • Flomenbom, O.1    Silbey, R.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.