메뉴 건너뛰기




Volumn , Issue , 2012, Pages 31-36

Coflow: A networking abstraction for cluster applications

Author keywords

Cloud computing; Cluster networking; Coflow; Data intensive applications; Datacenter networks

Indexed keywords

CLUSTER NETWORKING; CO-FLOW; COMMUNICATION PATTERN; COMPUTING APPLICATIONS; DATA PARALLEL; DATA-INTENSIVE APPLICATION; DATA-PARALLEL PROGRAMMING; HIGHER-LEVEL ABSTRACTION; MAP-REDUCE;

EID: 84870307720     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2390231.2390237     Document Type: Conference Paper
Times cited : (332)

References (30)
  • 1
    • 84871108045 scopus 로고    scopus 로고
    • Apache Giraph. http://incubator.apache.org/giraph.
    • Apache Giraph.
  • 2
  • 3
    • 84871151455 scopus 로고    scopus 로고
    • Apache Hama. http://hama.apache.org.
    • Apache Hama
  • 4
    • 84871116890 scopus 로고    scopus 로고
    • Apache HDFS. http://hadoop.apache.org/hdfs/.
    • Apache HDFS
  • 5
    • 84871119172 scopus 로고    scopus 로고
    • Apache Hive. http://hadoop.apache.org/hive.
    • Apache Hive
  • 6
    • 85015466003 scopus 로고    scopus 로고
    • Hedera: Dynamic flow scheduling for data center networks
    • M. Al-Fares et al. Hedera: Dynamic flow scheduling for data center networks. In NSDI, 2010.
    • (2010) NSDI
    • Al-Fares, M.1
  • 7
    • 80053157623 scopus 로고    scopus 로고
    • Towards predictable datacenter networks
    • H. Ballani et al. Towards predictable datacenter networks. In SIGCOMM, 2011.
    • (2011) SIGCOMM
    • Ballani, H.1
  • 8
    • 84866483724 scopus 로고    scopus 로고
    • Surviving failures in bandwidth-constrained datacenters
    • P. Bodik et al. Surviving failures in bandwidth-constrained datacenters. In SIGCOMM, 2012.
    • (2012) SIGCOMM
    • Bodik, P.1
  • 9
    • 84860560293 scopus 로고    scopus 로고
    • SCOPE: Easy and efficient parallel processing of massive datasets
    • R. Chaiken et al. SCOPE: Easy and efficient parallel processing of massive datasets. In VLDB, 2008.
    • (2008) VLDB
    • Chaiken, R.1
  • 10
    • 77954727236 scopus 로고    scopus 로고
    • FlumeJava: Easy, efficient data-parallel pipelines
    • C. Chambers et al. FlumeJava: Easy, efficient data-parallel pipelines. In PLDI, pages 363-375, 2010.
    • (2010) PLDI , pp. 363-375
    • Chambers, C.1
  • 11
    • 80053134218 scopus 로고    scopus 로고
    • Managing data transfers in computer clusters with Orchestra
    • M. Chowdhury et al. Managing data transfers in computer clusters with Orchestra. In SIGCOMM, 2011.
    • (2011) SIGCOMM
    • Chowdhury, M.1
  • 12
    • 85076771850 scopus 로고    scopus 로고
    • Map reduce online
    • T. Condie et al. MapReduce Online. In NSDI, 2010.
    • (2010) NSDI
    • Condie, T.1
  • 13
    • 85030321143 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In OSDI, pages 137-150, 2004.
    • (2004) OSDI , pp. 137-150
    • Dean, J.1    Ghemawat, S.2
  • 15
    • 84871175805 scopus 로고    scopus 로고
    • Spotting code optimizations in data-parallel pipelines through PeriSCOPE
    • Z. Guo et al. Spotting code optimizations in data-parallel pipelines through PeriSCOPE. In OSDI, 2012.
    • (2012) OSDI
    • Guo, Z.1
  • 16
    • 84866516958 scopus 로고    scopus 로고
    • Finishing flows quickly with preemptive scheduling
    • C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing flows quickly with preemptive scheduling. In SIGCOMM, 2012.
    • (2012) SIGCOMM
    • Hong, C.-Y.1    Caesar, M.2    Godfrey, P.B.3
  • 17
    • 34548041192 scopus 로고    scopus 로고
    • Dryad: Distributed data-parallel programs from sequential building blocks
    • M. Isard et al. Dryad: Distributed data-parallel programs from sequential building blocks. In EuroSys, pages 59-72, 2007.
    • (2007) EuroSys , pp. 59-72
    • Isard, M.1
  • 18
    • 84863735533 scopus 로고    scopus 로고
    • Distributed graphLab: A framework for machine learning and data mining in the cloud
    • Y. Low et al. Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud. In PVLDB, 2012.
    • (2012) PVLDB
    • Low, Y.1
  • 19
    • 77954723629 scopus 로고    scopus 로고
    • Pregel: A system for large-scale graph processing
    • G. Malewicz et al. Pregel: A system for large-scale graph processing. In SIGMOD, 2010.
    • (2010) SIGMOD
    • Malewicz, G.1
  • 20
    • 68649129121 scopus 로고    scopus 로고
    • OpenFlow: Enabling innovation in campus networks
    • N. McKeown et al. OpenFlow: Enabling innovation in campus networks. SIGCOMM CCR, 38(2):69-74, 2008.
    • (2008) SIGCOMM CCR , vol.38 , Issue.2 , pp. 69-74
    • McKeown, N.1
  • 21
    • 55349148888 scopus 로고    scopus 로고
    • Pig latin: A not-so-foreign language for data processing
    • C. Olston et al. Pig latin: a not-so-foreign language for data processing. In SIGMOD, 2008.
    • (2008) SIGMOD
    • Olston, C.1
  • 22
    • 30344452311 scopus 로고    scopus 로고
    • Interpreting the data: Parallel analysis with Sawzall
    • R. Pike et al. Interpreting the data: Parallel analysis with Sawzall. Scientific Programming, 13(4), 2005.
    • (2005) Scientific Programming , vol.13 , Issue.4
    • Pike, R.1
  • 23
    • 84866489695 scopus 로고    scopus 로고
    • FairCloud: Sharing the network is cloud computing
    • L. Popa et al. FairCloud: Sharing the network is cloud computing. In SIGCOMM, 2012.
    • (2012) SIGCOMM
    • Popa, L.1
  • 24
    • 84865138707 scopus 로고    scopus 로고
    • Seawall: Performance isolation for cloud datacenter networks
    • A. Shieh et al. Seawall: Performance Isolation for Cloud Datacenter Networks. In HotCloud, 2010.
    • (2010) HotCloud
    • Shieh, A.1
  • 25
    • 84860651691 scopus 로고    scopus 로고
    • An architecture for internet data transfer
    • N. Tolia et al. An architecture for internet data transfer. In NSDI, 2006.
    • (2006) NSDI
    • Tolia, N.1
  • 26
    • 80053169446 scopus 로고    scopus 로고
    • Better never than late: Meeting deadlines in datacenter networks
    • C. Wilson et al. Better never than late: Meeting deadlines in datacenter networks. In SIGCOMM, 2011.
    • (2011) SIGCOMM
    • Wilson, C.1
  • 27
    • 70350591395 scopus 로고    scopus 로고
    • DryadLINQ: A system for general-purpose distributed data-parallel computing using a high-level language
    • Y. Yu et al. DryadLINQ: A system for general-purpose distributed data-parallel computing using a high-level language. In OSDI, 2008.
    • (2008) OSDI
    • Yu, Y.1
  • 28
    • 85040175609 scopus 로고    scopus 로고
    • Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
    • M. Zaharia et al. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In NSDI, 2012.
    • (2012) NSDI
    • Zaharia, M.1
  • 29
    • 84866481397 scopus 로고    scopus 로고
    • DeTail: Reducing the flow completion time tail in datacenter networks
    • D. Zats et al. DeTail: Reducing the flow completion time tail in datacenter networks. In SIGCOMM, 2012.
    • (2012) SIGCOMM
    • Zats, D.1
  • 30
    • 85076643377 scopus 로고    scopus 로고
    • Optimizing data shuffling in data-parallel computation by understanding user-defined functions
    • J. Zhang et al. Optimizing data shuffling in data-parallel computation by understanding user-defined functions. In NSDI, 2012.
    • (2012) NSDI
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.