메뉴 건너뛰기




Volumn 475, Issue , 2012, Pages 53-64

A multi-layer soil moisture data assimilation using support vector machines and ensemble particle filter

Author keywords

Data assimilation; Ensemble kalman filter; Ensemble particle filter; Particle filter; Support vector machines

Indexed keywords

AIR TEMPERATURE; DATA ASSIMILATION; DATA ASSIMILATION METHODS; DATA ASSIMILATION TECHNIQUES; ENSEMBLE KALMAN FILTER; ENSEMBLE MEMBERS; HYDROLOGY AND WATER RESOURCE; METEOROLOGICAL PARAMETERS; MOISTURE DATA; PARTICLE FILTER; RESAMPLING; ROBUST MODELS; ROOT ZONE; SOIL TEMPERATURE; STUDY AREAS; SVM MODEL; TRAINING DATA; TRAINING PHASE;

EID: 84870251764     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2012.08.034     Document Type: Article
Times cited : (44)

References (56)
  • 1
    • 77949594317 scopus 로고    scopus 로고
    • Soil moisture profile development from surface observations by principle of maximum entropy
    • Al-Hamdan O.Z., Cruise J.F. Soil moisture profile development from surface observations by principle of maximum entropy. J. Hydrol. Eng. 2010, 15(5):327-337.
    • (2010) J. Hydrol. Eng. , vol.15 , Issue.5 , pp. 327-337
    • Al-Hamdan, O.Z.1    Cruise, J.F.2
  • 2
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: the support vector machines approach
    • Asefa T., Kemblowski M., McKee M., Khalil A. Multi-time scale stream flow predictions: the support vector machines approach. J. Hydrol. 2006, 318(1-4):7-16.
    • (2006) J. Hydrol. , vol.318 , Issue.1-4 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 3
    • 10944257448 scopus 로고    scopus 로고
    • Support vector machines approximation of flow and transport models in initial groundwater contamination network design
    • Asefa T., Kemblowski M.W. Support vector machines approximation of flow and transport models in initial groundwater contamination network design. EOS Trans. Am. Geophys. Union 2002, 83.
    • (2002) EOS Trans. Am. Geophys. Union , pp. 83
    • Asefa, T.1    Kemblowski, M.W.2
  • 5
    • 77950866077 scopus 로고    scopus 로고
    • Statistical downscaling of daily precipitation using support vector machines and multivariate analysis
    • Chen S.T., Yu P.S., Tang Y.H. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. J. Hydrol. 2010, 385(1-4):13-22.
    • (2010) J. Hydrol. , vol.385 , Issue.1-4 , pp. 13-22
    • Chen, S.T.1    Yu, P.S.2    Tang, Y.H.3
  • 6
    • 17744380204 scopus 로고    scopus 로고
    • Particle filter for state and parameter estimation in batch process
    • Chen T., Morris J., Martin E. Particle filter for state and parameter estimation in batch process. J. Process Control 2005, 15(6):665-673.
    • (2005) J. Process Control , vol.15 , Issue.6 , pp. 665-673
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 8
    • 0037298763 scopus 로고    scopus 로고
    • The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: a case study based on ESTAR measurements during SGP97
    • Crow W.T., Wood E.F. The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: a case study based on ESTAR measurements during SGP97. Adv. Water Resour. 2003, 26(2):137-149.
    • (2003) Adv. Water Resour. , vol.26 , Issue.2 , pp. 137-149
    • Crow, W.T.1    Wood, E.F.2
  • 9
    • 11444264637 scopus 로고    scopus 로고
    • A review of soil moisture dynamics: from rainfall infiltration to ecosystem response
    • Daly E., Porporato A. A review of soil moisture dynamics: from rainfall infiltration to ecosystem response. Environ. Eng. Sci. 2005, 22(1):9-24.
    • (2005) Environ. Eng. Sci. , vol.22 , Issue.1 , pp. 9-24
    • Daly, E.1    Porporato, A.2
  • 10
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: introduction and applications
    • Dibike B.Y., Velickov S., Solomatin D., Abbot B.M. Model induction with support vector machines: introduction and applications. J. Comput. Civil Eng. 2001, 15(3):208-216.
    • (2001) J. Comput. Civil Eng. , vol.15 , Issue.3 , pp. 208-216
    • Dibike, B.Y.1    Velickov, S.2    Solomatin, D.3    Abbot, B.M.4
  • 12
    • 59349086120 scopus 로고    scopus 로고
    • Forecasting PVT properties of crude oil systems based on support vector machines modeling scheme
    • El-Sebakhy E.A. Forecasting PVT properties of crude oil systems based on support vector machines modeling scheme. J. Petrol. Sci. Eng. 2009, 64(1-4):25-34.
    • (2009) J. Petrol. Sci. Eng. , vol.64 , Issue.1-4 , pp. 25-34
    • El-Sebakhy, E.A.1
  • 13
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics
    • Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res. 1994, 99(C5):10143-10162.
    • (1994) J. Geophys. Res. , vol.99 , Issue.C5 , pp. 10143-10162
    • Evensen, G.1
  • 14
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: theoretical formulation and practical implementation
    • Evensen G. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 2003, 53(4):343-367.
    • (2003) Ocean Dyn. , vol.53 , Issue.4 , pp. 343-367
    • Evensen, G.1
  • 15
    • 58549101865 scopus 로고    scopus 로고
    • Particle filtering approximations for a Gaussian-generalized inverse Gaussian model
    • Ferrante M., Frigo N. Particle filtering approximations for a Gaussian-generalized inverse Gaussian model. Stat. Prob. Lett. 2009, 79(4):442-449.
    • (2009) Stat. Prob. Lett. , vol.79 , Issue.4 , pp. 442-449
    • Ferrante, M.1    Frigo, N.2
  • 17
    • 33748060863 scopus 로고    scopus 로고
    • Multi-objective particle swarm optimization for parameter estimation in hydrology
    • Gill M.K., Kaheil Y.H., Khalil A., McKee M., Bastidas L. Multi-objective particle swarm optimization for parameter estimation in hydrology. Water Resour. Res. 2006, 42:W07417.
    • (2006) Water Resour. Res. , vol.42
    • Gill, M.K.1    Kaheil, Y.H.2    Khalil, A.3    McKee, M.4    Bastidas, L.5
  • 18
    • 34547102978 scopus 로고    scopus 로고
    • Soil moisture data assimilation using support vector machines and ensemble Kalman filter
    • Gill M.K., McKee M. Soil moisture data assimilation using support vector machines and ensemble Kalman filter. J. Am. Water Resour. Assoc. 2007, 43(4):1004-1015.
    • (2007) J. Am. Water Resour. Assoc. , vol.43 , Issue.4 , pp. 1004-1015
    • Gill, M.K.1    McKee, M.2
  • 19
    • 0032136153 scopus 로고    scopus 로고
    • Conditional density propagation for visual tracking
    • (Number 1/August)
    • Isard M., Blake A. Conditional density propagation for visual tracking. Int. J. Comput. Vision 1998, 29. (Number 1/August).
    • (1998) Int. J. Comput. Vision , pp. 29
    • Isard, M.1    Blake, A.2
  • 20
    • 0000015119 scopus 로고    scopus 로고
    • Why bother for 0.0001% of earth's water? Challenges for soil moisture research
    • Islam S.I., Engman E.T. Why bother for 0.0001% of earth's water? Challenges for soil moisture research. EOS Trans. Am. Geophys. Union 1996, 77-420.
    • (1996) EOS Trans. Am. Geophys. Union , pp. 77-420
    • Islam, S.I.1    Engman, E.T.2
  • 21
    • 39049134237 scopus 로고    scopus 로고
    • A two-stage ensemble Kalman filter for smooth data assimilation
    • Johns C.J., Mandel J. A two-stage ensemble Kalman filter for smooth data assimilation. Environ. Ecol. Stat. 2008, 15(1):101-110.
    • (2008) Environ. Ecol. Stat. , vol.15 , Issue.1 , pp. 101-110
    • Johns, C.J.1    Mandel, J.2
  • 22
  • 23
    • 65349101737 scopus 로고    scopus 로고
    • Using oceanic atmospheric oscillations for long lead time streamflow forecasting
    • Kalra A., Ahmad S. Using oceanic atmospheric oscillations for long lead time streamflow forecasting. Water Resour. Res. 2009, 45:W03413.
    • (2009) Water Resour. Res. , vol.45
    • Kalra, A.1    Ahmad, S.2
  • 25
    • 50549087914 scopus 로고    scopus 로고
    • A land surface data assimilation framework using the land information system: description and applications
    • Kumar S.V., et al. A land surface data assimilation framework using the land information system: description and applications. Adv. Water Resour. 2008, 31(11):1419-1432.
    • (2008) Adv. Water Resour. , vol.31 , Issue.11 , pp. 1419-1432
    • Kumar, S.V.1
  • 26
    • 74149088039 scopus 로고    scopus 로고
    • Towards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals
    • Li F.Q., Crow W.T., Kustas W.P. Towards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals. Adv. Water Resour. 2010, 33(2):201-214.
    • (2010) Adv. Water Resour. , vol.33 , Issue.2 , pp. 201-214
    • Li, F.Q.1    Crow, W.T.2    Kustas, W.P.3
  • 27
    • 84870255455 scopus 로고    scopus 로고
    • Bayes filtering frame of sequential-based data assimilation
    • Li X., Bai Y.L. Bayes filtering frame of sequential-based data assimilation. Adv. Earth Sci. 2010, 25(5):515-522.
    • (2010) Adv. Earth Sci. , vol.25 , Issue.5 , pp. 515-522
    • Li, X.1    Bai, Y.L.2
  • 28
    • 70349774410 scopus 로고    scopus 로고
    • Effective forecasting of hourly typhoon rainfall using support vector machines
    • Lin G.F., Chen G.R., Wu M.C., Chou Y. Effective forecasting of hourly typhoon rainfall using support vector machines. Water Resour. Res. 2009, 45:W08440.
    • (2009) Water Resour. Res. , vol.45
    • Lin, G.F.1    Chen, G.R.2    Wu, M.C.3    Chou, Y.4
  • 29
    • 0036202123 scopus 로고    scopus 로고
    • Flood stage forecasting with support vector machines
    • Liong S., Sivapragasam C. Flood stage forecasting with support vector machines. J. Am. Water Resour. Assoc. 2002, 38(1):173-186.
    • (2002) J. Am. Water Resour. Assoc. , vol.38 , Issue.1 , pp. 173-186
    • Liong, S.1    Sivapragasam, C.2
  • 30
    • 0032642953 scopus 로고    scopus 로고
    • A land surface process/radio brightness with coupled heat and moisture transport for prairie grassland
    • Liou Y.A., Galantowicz J., England A.W. A land surface process/radio brightness with coupled heat and moisture transport for prairie grassland. IEEE Trans. Geosci. Remote Sens. 1999, 37(4):1848-1859.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.4 , pp. 1848-1859
    • Liou, Y.A.1    Galantowicz, J.2    England, A.W.3
  • 31
    • 0035446304 scopus 로고    scopus 로고
    • Retrieving soil moisture from simulated brightness temperature by a neural network
    • Liou Y.A., Liu S.F., Wang W.J. Retrieving soil moisture from simulated brightness temperature by a neural network. IEEE Trans. Geosci. Remote Sens. 2001, 39(8):1662-1672.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.8 , pp. 1662-1672
    • Liou, Y.A.1    Liu, S.F.2    Wang, W.J.3
  • 32
    • 78751631923 scopus 로고    scopus 로고
    • Data assimilation using support vector machines and ensemble Kalman filte for multi-layer soil moisture prediction
    • Liu D., Yu Z., Lv H.S. Data assimilation using support vector machines and ensemble Kalman filte for multi-layer soil moisture prediction. Water Sci. Eng. 2010, 3(4):361-377.
    • (2010) Water Sci. Eng. , vol.3 , Issue.4 , pp. 361-377
    • Liu, D.1    Yu, Z.2    Lv, H.S.3
  • 33
    • 85018194023 scopus 로고    scopus 로고
    • Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data
    • Lo M.H., Famiglietti J.S., Yeh P.J.F., Syed T.H. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data. Water Resour. Res. 2010, 46:W05517.
    • (2010) Water Resour. Res. , vol.46
    • Lo, M.H.1    Famiglietti, J.S.2    Yeh, P.J.F.3    Syed, T.H.4
  • 34
    • 77951662436 scopus 로고    scopus 로고
    • Potential of support vector regression for prediction of monthly streamflow using endogenous property
    • Maity R., Bhagwat P.P., Bhatnagar A. Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrol. Process. 2010, 24(7):917-923.
    • (2010) Hydrol. Process. , vol.24 , Issue.7 , pp. 917-923
    • Maity, R.1    Bhagwat, P.P.2    Bhatnagar, A.3
  • 35
    • 0037001561 scopus 로고    scopus 로고
    • Land data assimilation of soil moisture using measurements from the southern great plains 1997 field experiment
    • Margulis S.A., McLaughlin D., Entekhabi D., Dunne S. Land data assimilation of soil moisture using measurements from the southern great plains 1997 field experiment. Water Resour. Res. 2002, 38(12):1299.
    • (2002) Water Resour. Res. , vol.38 , Issue.12 , pp. 1299
    • Margulis, S.A.1    McLaughlin, D.2    Entekhabi, D.3    Dunne, S.4
  • 37
    • 34547317797 scopus 로고    scopus 로고
    • Opportunities for enhanced collabration within the data assimilation community
    • McLaughlin D., O'Neill A., Derber J., Kamachi M. Opportunities for enhanced collabration within the data assimilation community. Quart. J. Roy. Meteorol. Soc. 2005, 131(36):83-93.
    • (2005) Quart. J. Roy. Meteorol. Soc. , vol.131 , Issue.36 , pp. 83-93
    • McLaughlin, D.1    O'Neill, A.2    Derber, J.3    Kamachi, M.4
  • 38
    • 34547917621 scopus 로고    scopus 로고
    • Analysis of parallelizable resampling algorithms for particle filtering
    • Miguez J. Analysis of parallelizable resampling algorithms for particle filtering. Signal Process. 2007, 87(12):3155-3174.
    • (2007) Signal Process. , vol.87 , Issue.12 , pp. 3155-3174
    • Miguez, J.1
  • 39
    • 77950472509 scopus 로고    scopus 로고
    • Effect of simultaneous state-parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF
    • Monsivais-Huertero A., Graham W.D., Judge J., Agrawal D. Effect of simultaneous state-parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF. Adv. Water Resour. 2010, 33(4):468-484.
    • (2010) Adv. Water Resour. , vol.33 , Issue.4 , pp. 468-484
    • Monsivais-Huertero, A.1    Graham, W.D.2    Judge, J.3    Agrawal, D.4
  • 40
    • 44649147780 scopus 로고    scopus 로고
    • Hydrologic remote sensing and land surface data assimilation
    • Moradkhani H. Hydrologic remote sensing and land surface data assimilation. Sensors 2008, 8(5):2986-3004.
    • (2008) Sensors , vol.8 , Issue.5 , pp. 2986-3004
    • Moradkhani, H.1
  • 41
    • 0031375732 scopus 로고    scopus 로고
    • Nonlinear prediction of chaotic time series using support vector machines
    • Amelia Island, FL. The Institute of Electrical and Electronic Engineers Inc., New York
    • Mukherjee, S., Osuna, E., Girosi, F., 1997. Nonlinear prediction of chaotic time series using support vector machines. In: Proceedings of IEEE Workshops on Neutral Network for Signal Processing, Amelia Island, FL. The Institute of Electrical and Electronic Engineers Inc., New York, pp. 511-520.
    • (1997) Proceedings of IEEE Workshops on Neutral Network for Signal Processing , pp. 511-520
    • Mukherjee, S.1    Osuna, E.2    Girosi, F.3
  • 43
    • 0037087574 scopus 로고    scopus 로고
    • Improvement of TOPLATS-based discharge predictions through assimilation of ERS-based remotely sensed soil moisture values
    • Pauwels V.R.N., Hoeben R., Verhoest N.E.C., Troch F.P.D., Troch P.A. Improvement of TOPLATS-based discharge predictions through assimilation of ERS-based remotely sensed soil moisture values. Hydrol. Process. 2002, 16(5):995-1013.
    • (2002) Hydrol. Process. , vol.16 , Issue.5 , pp. 995-1013
    • Pauwels, V.R.N.1    Hoeben, R.2    Verhoest, N.E.C.3    Troch, F.P.D.4    Troch, P.A.5
  • 44
    • 70350074473 scopus 로고    scopus 로고
    • Simultaneous estimation of both soil moisture and model parameters using particle filtering method through the assimilation of microwave signal
    • Qin J., Liang S.L., Yang K., Kaihotsu I., et al. Simultaneous estimation of both soil moisture and model parameters using particle filtering method through the assimilation of microwave signal. J. Geophys. Res. 2009, 114:D15103.
    • (2009) J. Geophys. Res. , vol.114
    • Qin, J.1    Liang, S.L.2    Yang, K.3    Kaihotsu, I.4
  • 45
    • 0036322061 scopus 로고    scopus 로고
    • Hydrologic data assimilation with the ensemble Kalman filter
    • Reichle R.H., McLaughlin D.B., Entekhabi D. Hydrologic data assimilation with the ensemble Kalman filter. Mon. Weather Rev. 2002, 130:103-114.
    • (2002) Mon. Weather Rev. , vol.130 , pp. 103-114
    • Reichle, R.H.1    McLaughlin, D.B.2    Entekhabi, D.3
  • 46
    • 0031272926 scopus 로고    scopus 로고
    • Comparing support vector machines with gaussian kernels to radial basis function classifiers
    • Schölkopf B., et al. Comparing support vector machines with gaussian kernels to radial basis function classifiers. IEEE Trans. Signal Process.: Publ. IEEE Signal Process. Soc. 1997, 45(11):2758-2765.
    • (1997) IEEE Trans. Signal Process.: Publ. IEEE Signal Process. Soc. , vol.45 , Issue.11 , pp. 2758-2765
    • Schölkopf, B.1
  • 47
    • 0004094721 scopus 로고    scopus 로고
    • Ph.D. Thesis, Technischen University of Berlin, Berlin, Germany.
    • Smola, A.J., 1998. Learning with kernels. Ph.D. Thesis, Technischen University of Berlin, Berlin, Germany.
    • (1998) Learning with kernels
    • Smola, A.J.1
  • 49
    • 74949130817 scopus 로고    scopus 로고
    • Particle filtering in geosciences
    • van Leeuwen P. Particle filtering in geosciences. Mon. Weather Rev. 2009, 137:4089-4114.
    • (2009) Mon. Weather Rev. , vol.137 , pp. 4089-4114
    • van Leeuwen, P.1
  • 50
    • 78650057011 scopus 로고    scopus 로고
    • Nonlinear data assimilation in geosciences: an extremely efficient particle filter
    • van Leeuwen P. Nonlinear data assimilation in geosciences: an extremely efficient particle filter. Quart. J. Roy. Meteorol. Soc. 2010, 136:1991-1999.
    • (2010) Quart. J. Roy. Meteorol. Soc. , vol.136 , pp. 1991-1999
    • van Leeuwen, P.1
  • 53
    • 33750368306 scopus 로고    scopus 로고
    • Particle filtering and ensemble kalman filtering for state updating with hydrological conceptual rainfall-runoff models
    • Weerts A.H., Serafy G.Y.H.E. Particle filtering and ensemble kalman filtering for state updating with hydrological conceptual rainfall-runoff models. Water Resour. Res. 2006, 42(9):W09403.
    • (2006) Water Resour. Res. , vol.42 , Issue.9
    • Weerts, A.H.1    Serafy, G.Y.H.E.2
  • 54
    • 77953120926 scopus 로고    scopus 로고
    • Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter
    • Xie X.H., Zhang D.X. Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter. Adv. Water Resour. 2010, 33(6):678-690.
    • (2010) Adv. Water Resour. , vol.33 , Issue.6 , pp. 678-690
    • Xie, X.H.1    Zhang, D.X.2
  • 55
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu P.S., Chen S.T., Chang I.F. Support vector regression for real-time flood stage forecasting. J. Hydrol. 2006, 328(3-4):704-716.
    • (2006) J. Hydrol. , vol.328 , Issue.3-4 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 56
    • 77957827887 scopus 로고    scopus 로고
    • Particle filter based on particle swarm optimization resampling for vision tracking
    • Zhao J., Li Z. Particle filter based on particle swarm optimization resampling for vision tracking. Exp. Syst. Appl. 2010, 37(12):8910-8914.
    • (2010) Exp. Syst. Appl. , vol.37 , Issue.12 , pp. 8910-8914
    • Zhao, J.1    Li, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.