메뉴 건너뛰기




Volumn 102, Issue , 2013, Pages 10-22

A novel automatic two-stage locally regularized classifier construction method using the extreme learning machine

Author keywords

Classification; Extreme learning machine; Leave one out (LOO) misclassification rate; Linear in the parameters model; Regularization; Two stage stepwise selection

Indexed keywords

COMPUTATIONAL EXPENSE; CONSTRUCTION METHOD; EXTREME LEARNING MACHINE; FAST IMPLEMENTATION; FINAL PREDICTION ERRORS; GAUSSIAN FUNCTIONS; GENERALIZATION CAPABILITY; LEAVE-ONE-OUT; MISCLASSIFICATION RATES; NON-LINEAR PARAMETERS; REGULARIZATION; STOPPING CRITERION; TRAINING DATA; TWO-STAGE STEPWISE SELECTION;

EID: 84870239889     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.12.052     Document Type: Article
Times cited : (6)

References (36)
  • 1
    • 76249105885 scopus 로고    scopus 로고
    • A novel hybrid linear/nonlinear classifier for two-class classification: theory, algorithm and applications
    • Chen W., Metz C.E., Giger M.L., Drukker K. A novel hybrid linear/nonlinear classifier for two-class classification: theory, algorithm and applications. IEEE Trans. Med. Imaging 2010, 29(2):428-441.
    • (2010) IEEE Trans. Med. Imaging , vol.29 , Issue.2 , pp. 428-441
    • Chen, W.1    Metz, C.E.2    Giger, M.L.3    Drukker, K.4
  • 3
    • 71349085322 scopus 로고    scopus 로고
    • Multiple classifier application to credit risk assessment
    • Twala B. Multiple classifier application to credit risk assessment. Expert Syst. Appl. 2010, 37:3326-3336.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 3326-3336
    • Twala, B.1
  • 4
    • 84870243196 scopus 로고    scopus 로고
    • Support Vector Machines for Classification and Regression, Technical Report, University of Southampton.
    • S.R. Gunn, Support Vector Machines for Classification and Regression, Technical Report, University of Southampton, 1998.
    • (1998)
    • Gunn, S.R.1
  • 5
    • 60349123276 scopus 로고    scopus 로고
    • Incremental construction of classifier and discriminant ensembles
    • Ulas A., Semerci M., Y1ld1z O.T., Alpayd1n E. Incremental construction of classifier and discriminant ensembles. Inf. Sci. 2009, 179:1298-1318.
    • (2009) Inf. Sci. , vol.179 , pp. 1298-1318
    • Ulas, A.1    Semerci, M.2    Y1ld1z, O.T.3    Alpayd1n, E.4
  • 6
    • 0028465208 scopus 로고
    • Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems
    • Elanayar S., Shin Y.C. Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems. IEEE Trans. Neural Networks 1994, 5(4):594-603.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.4 , pp. 594-603
    • Elanayar, S.1    Shin, Y.C.2
  • 7
    • 0028341934 scopus 로고
    • On radial basis function nets and kernel regression: statistical consistency, convergence rates, and receptive field size
    • Xu L., Krzyzak A., Yuille A. On radial basis function nets and kernel regression: statistical consistency, convergence rates, and receptive field size. Neural Networks 1994, 7(4):609-628.
    • (1994) Neural Networks , vol.7 , Issue.4 , pp. 609-628
    • Xu, L.1    Krzyzak, A.2    Yuille, A.3
  • 8
    • 80051593049 scopus 로고    scopus 로고
    • Upper integral network with extreme learning mechanism
    • Wang X., Chen A., Feng H. Upper integral network with extreme learning mechanism. Neurocomputing 2011, 74:2520-2525.
    • (2011) Neurocomputing , vol.74 , pp. 2520-2525
    • Wang, X.1    Chen, A.2    Feng, H.3
  • 10
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 12
    • 0037861058 scopus 로고    scopus 로고
    • Automatic nonlinear predictive model-construction algorithm using forward regression and the PRESS static
    • Hong X., Sharkey P.M., Warwick K. Automatic nonlinear predictive model-construction algorithm using forward regression and the PRESS static. IEE Proc. Control Theory Appl. 2003, 150(3):245-254.
    • (2003) IEE Proc. Control Theory Appl. , vol.150 , Issue.3 , pp. 245-254
    • Hong, X.1    Sharkey, P.M.2    Warwick, K.3
  • 13
    • 0036740269 scopus 로고    scopus 로고
    • RBF neural network center selection based on Fisher ratio class separability measure
    • Mao K.Z. RBF neural network center selection based on Fisher ratio class separability measure. IEEE Trans. Neural Netw. 2002, 13(5):1211-1217.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.5 , pp. 1211-1217
    • Mao, K.Z.1
  • 14
    • 26244441991 scopus 로고    scopus 로고
    • A fast nonlinear model identification method
    • Li K., Peng J., Irwin G.W. A fast nonlinear model identification method. IEEE Trans. Autom. Control 2005, 50(8):1211-1216.
    • (2005) IEEE Trans. Autom. Control , vol.50 , Issue.8 , pp. 1211-1216
    • Li, K.1    Peng, J.2    Irwin, G.W.3
  • 15
    • 33847421698 scopus 로고    scopus 로고
    • A novel continuous forward algorithm for RBF neural modelling
    • Peng J., Li K., Irwin G.W. A novel continuous forward algorithm for RBF neural modelling. IEEE Trans. Autom. Control 2007, 52(1):117-122.
    • (2007) IEEE Trans. Autom. Control , vol.52 , Issue.1 , pp. 117-122
    • Peng, J.1    Li, K.2    Irwin, G.W.3
  • 16
    • 77958150674 scopus 로고    scopus 로고
    • A dynamic classifier ensemble selection approach for noise data
    • Xiao J., Hen C., Jiang X., Liu D. A dynamic classifier ensemble selection approach for noise data. Inf. Sci. 2010, 180:3402-3421.
    • (2010) Inf. Sci. , vol.180 , pp. 3402-3421
    • Xiao, J.1    Hen, C.2    Jiang, X.3    Liu, D.4
  • 17
    • 0022417790 scopus 로고
    • Computational vision and regularization theory
    • Poggio T., Torre V., Koch C. Computational vision and regularization theory. Nature 1985, 317:314-319.
    • (1985) Nature , vol.317 , pp. 314-319
    • Poggio, T.1    Torre, V.2    Koch, C.3
  • 18
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl A.E., Kennard R.W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 12(1):55-67.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 19
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D.J.C. Bayesian interpolation. Neural Comput. 1992, 4(3):415-447.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 20
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.T. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1:211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.T.1
  • 21
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modelling using orthogonal forward regression with PRESS statistic and regularization
    • Chen S., Hong X., Harris C.J., Sharkey P.M. Sparse modelling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans. Syst. Man Cybern. B: Cybern. 2004, 34(2):898-911.
    • (2004) IEEE Trans. Syst. Man Cybern. B: Cybern. , vol.34 , Issue.2 , pp. 898-911
    • Chen, S.1    Hong, X.2    Harris, C.J.3    Sharkey, P.M.4
  • 22
    • 84867197544 scopus 로고    scopus 로고
    • A novel locally regularized automatic construction method for RBF neural models, Neurocomputing, , in press.
    • D. Du, X. Li, M.R. Fei, G.W. Irwin, A novel locally regularized automatic construction method for RBF neural models, Neurocomputing, , in press. http://dx.doi.org/10.1016/j.neucom.2011.05.045.
    • Du, D.1    Li, X.2    Fei, M.R.3    Irwin, G.W.4
  • 23
    • 84942737910 scopus 로고
    • Fitting autoregressive models for prediction
    • Akaike H. Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 1969, 21(1):243-247.
    • (1969) Ann. Inst. Stat. Math. , vol.21 , Issue.1 , pp. 243-247
    • Akaike, H.1
  • 24
    • 0000629975 scopus 로고
    • Cross validatory choice and assessment of statistical predictions
    • Stone M. Cross validatory choice and assessment of statistical predictions. J. R. Stat. Soc. 1974, 36(1):117-147.
    • (1974) J. R. Stat. Soc. , vol.36 , Issue.1 , pp. 117-147
    • Stone, M.1
  • 25
    • 33847074971 scopus 로고    scopus 로고
    • Backward elimination model construction for regression and classification using leave one out criteria
    • Hong X., Mitchell R.J. Backward elimination model construction for regression and classification using leave one out criteria. Int. J. Syst. Sci. 2007, 38(2):101-113.
    • (2007) Int. J. Syst. Sci. , vol.38 , Issue.2 , pp. 101-113
    • Hong, X.1    Mitchell, R.J.2
  • 26
    • 33646800222 scopus 로고    scopus 로고
    • A two-stage algorithm for identification of nonlinear dynamic systems
    • Li K., Peng J., Bai E.W. A two-stage algorithm for identification of nonlinear dynamic systems. Automatica 2006, 42:1189-1197.
    • (2006) Automatica , vol.42 , pp. 1189-1197
    • Li, K.1    Peng, J.2    Bai, E.W.3
  • 27
    • 80051589759 scopus 로고    scopus 로고
    • Fast automatic two-stage nonlinear model identification based on the extreme learning machine
    • Deng J., Li K., Irwin G.W. Fast automatic two-stage nonlinear model identification based on the extreme learning machine. Neurocomputing 2011, 74(16):2422-2429.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2422-2429
    • Deng, J.1    Li, K.2    Irwin, G.W.3
  • 28
    • 63449091970 scopus 로고    scopus 로고
    • Two-stage mixed discrete-continuous identification of radial basis function (RBF) neural models for nonlinear systems
    • Li K., Peng J., Bai E.W. Two-stage mixed discrete-continuous identification of radial basis function (RBF) neural models for nonlinear systems. IEEE Trans. Circuits Syst. I 2009, 56(3):630-643.
    • (2009) IEEE Trans. Circuits Syst. I , vol.56 , Issue.3 , pp. 630-643
    • Li, K.1    Peng, J.2    Bai, E.W.3
  • 29
    • 38349160227 scopus 로고    scopus 로고
    • A fast linear-in-the-parameters classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate
    • Hong X., Chen S., Harris C.J. A fast linear-in-the-parameters classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate. Int. J. Syst. Sci. 2008, 39(2):119-125.
    • (2008) Int. J. Syst. Sci. , vol.39 , Issue.2 , pp. 119-125
    • Hong, X.1    Chen, S.2    Harris, C.J.3
  • 30
    • 47749106824 scopus 로고    scopus 로고
    • Model selection approaches for non-linear system identification: a review
    • Hong X., Mitchell R.J., Chen S., Harris C.J., Li K., Irwin G.W. Model selection approaches for non-linear system identification: a review. Int. J. Syst. Sci. 2008, 39(10):925-946.
    • (2008) Int. J. Syst. Sci. , vol.39 , Issue.10 , pp. 925-946
    • Hong, X.1    Mitchell, R.J.2    Chen, S.3    Harris, C.J.4    Li, K.5    Irwin, G.W.6
  • 34
    • 84871527224 scopus 로고    scopus 로고
    • University of East Anglia Computational Biology Laboratory, URL 〈〉.
    • University of East Anglia Computational Biology Laboratory, URL 〈〉. http://theoval.cmp.uea.ac.uk/gcc/matlab/.
  • 35
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55(1):119-139.
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 36
    • 84871491890 scopus 로고    scopus 로고
    • MATLAB Codes of ELM Algorithm. URL 〈〉.
    • Q.-Y. Zhu, G.-B. Huang, MATLAB Codes of ELM Algorithm. URL 〈〉. http://www.ntu.edu.sg/home/egbhuang/ELM-Codes.htm.
    • Zhu, Q.-Y.1    Huang, G.-B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.