-
1
-
-
84908024292
-
An exponential estimate of the time of stability of nearly integrable Hamiltonian systems
-
N.N. Nekhoroshev An exponential estimate of the time of stability of nearly integrable Hamiltonian systems Russian Math. Surveys 32 6 1977 1 65
-
(1977)
Russian Math. Surveys
, vol.32
, Issue.6
, pp. 1-65
-
-
Nekhoroshev, N.N.1
-
3
-
-
43949162797
-
Frequency analysis for multi-dimensional systems. global dynamics and diffusion
-
J. Laskar Frequency analysis for multi-dimensional systems. global dynamics and diffusion Physica D 67 1993 257 281
-
(1993)
Physica D
, vol.67
, pp. 257-281
-
-
Laskar, J.1
-
4
-
-
0041529988
-
Phase space structure of multidimensional systems by means of the mean exponential growth factor of nearby orbits (MEGNO)
-
P.M. Cincotta, C.M. Giordano, and C. Simó Phase space structure of multidimensional systems by means of the mean exponential growth factor of nearby orbits (MEGNO) Physica D 182 2003 151 178
-
(2003)
Physica D
, vol.182
, pp. 151-178
-
-
Cincotta, P.M.1
Giordano, C.M.2
Simó, C.3
-
5
-
-
24344440609
-
Local and global diffusion along resonant lines in discrete quasi-integrable dynamical systems
-
C. Froeschlé, M. Guzzo, and E. Lega Local and global diffusion along resonant lines in discrete quasi-integrable dynamical systems Celestial Mech. Dynam. Astronom. 92 2005 243 255
-
(2005)
Celestial Mech. Dynam. Astronom.
, vol.92
, pp. 243-255
-
-
Froeschlé, C.1
Guzzo, M.2
Lega, E.3
-
6
-
-
67349261988
-
Measure of the exponential splitting of the homoclinic tangle in four-dimensional symplectic mappings
-
C. Froeschlé, M. Guzzo, and E. Lega Measure of the exponential splitting of the homoclinic tangle in four-dimensional symplectic mappings Celestial Mech. Dynam. Astronom. 104 2009 191 204
-
(2009)
Celestial Mech. Dynam. Astronom.
, vol.104
, pp. 191-204
-
-
Froeschlé, C.1
Guzzo, M.2
Lega, E.3
-
7
-
-
30344453375
-
A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Heuristics and rigorous verification on a model
-
A. Delshams, R. de la Llave, and Tere M. Seara A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model Mem. Amer. Math. Soc. 179 844 2006 viii+141 pp
-
(2006)
Mem. Amer. Math. Soc.
, vol.179
, Issue.844
-
-
Delshams, A.1
De La Llave, R.2
Seara, T.M.3
-
8
-
-
0002718466
-
Instability of dynamical systems with many degrees of freedom
-
V.I. Arnold Instability of dynamical systems with many degrees of freedom Dokl. Akad. Nauk SSSR 156 1964 9 12
-
(1964)
Dokl. Akad. Nauk SSSR
, vol.156
, pp. 9-12
-
-
Arnold, V.I.1
-
10
-
-
84870066172
-
-
Applied Mathematical Sciences Springer-Verlag New York
-
G. Haller Chaos Near Resonance Applied Mathematical Sciences vol. 138 1999 Springer-Verlag New York 427 pp
-
(1999)
Chaos Near Resonance
, vol.138
, pp. 427
-
-
Haller, G.1
-
11
-
-
0031092595
-
Universal homoclinic bifurcations and chaos near double resonances
-
G. Haller Universal homoclinic bifurcations and chaos near double resonances J. Stat. Phys. 86 5-6 1997 1011 1051
-
(1997)
J. Stat. Phys.
, vol.86
, Issue.56
, pp. 1011-1051
-
-
Haller, G.1
-
14
-
-
1642331391
-
Dynamics near an irrational collision of eigenvalues for symplectic maps
-
Fields Institute Communications
-
T.J. Bridges, R.H. Cushman, and R.S. Mackay Dynamics near an irrational collision of eigenvalues for symplectic maps Normal Forms and Homoclinic Chaos 1991 Fields Institute Communications 61 79
-
(1991)
Normal Forms and Homoclinic Chaos
, pp. 61-79
-
-
Bridges, T.J.1
Cushman, R.H.2
MacKay, R.S.3
-
16
-
-
0042088095
-
Local analysis of formal stability and existence of fixed points in 4d symplectic mappings
-
E. Todesco Local analysis of formal stability and existence of fixed points in 4d symplectic mappings Physica D 95 1 1996 1 12
-
(1996)
Physica D
, vol.95
, Issue.1
, pp. 1-12
-
-
Todesco, E.1
-
17
-
-
0039533869
-
Singular perturbation theory for homoclinic orbits in a class of a near-integrable hamiltonian systems
-
G. Kovacic Singular perturbation theory for homoclinic orbits in a class of a near-integrable hamiltonian systems J. Dynam. Differential Equations 5 1993 559 597
-
(1993)
J. Dynam. Differential Equations
, vol.5
, pp. 559-597
-
-
Kovacic, G.1
-
18
-
-
0008495183
-
Orbits homoclinic to resonances: The Hamiltonian case
-
G. Haller, and S. Wiggins Orbits homoclinic to resonances: the Hamiltonian case Physica D 66 3-4 1993 298 346
-
(1993)
Physica D
, vol.66
, Issue.34
, pp. 298-346
-
-
Haller, G.1
Wiggins, S.2
-
19
-
-
0021660205
-
The separation of motions in systems with rapidly rotating phase
-
A.I. Neishtadt The separation of motions in systems with rapidly rotating phase J. Appl. Math. Mech. 48 1984 133 139
-
(1984)
J. Appl. Math. Mech.
, vol.48
, pp. 133-139
-
-
Neishtadt, A.I.1
-
23
-
-
67049122157
-
Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps
-
C. Simó, and A. Vieiro Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps Nonlinearity 22 5 2010 1191 1245
-
(2010)
Nonlinearity
, vol.22
, Issue.5
, pp. 1191-1245
-
-
Simó, C.1
Vieiro, A.2
-
24
-
-
0001356311
-
Persistence and smoothness of invariant manifolds for flows
-
N. Fenichel Persistence and smoothness of invariant manifolds for flows Indiana Univ. Math. J. 21 1971 193 225
-
(1971)
Indiana Univ. Math. J.
, vol.21
, pp. 193-225
-
-
Fenichel, N.1
-
25
-
-
0016070051
-
Asymptotic stability with rate conditions
-
N. Fenichel Asymptotic stability with rate conditions Indiana Univ. Math. J. 23 1974 1109 1137
-
(1974)
Indiana Univ. Math. J.
, vol.23
, pp. 1109-1137
-
-
Fenichel, N.1
-
26
-
-
0001957566
-
Asymptotic stability with rate conditions II
-
N. Fenichel Asymptotic stability with rate conditions II Indiana Univ. Math. J. 26 1977 81 93
-
(1977)
Indiana Univ. Math. J.
, vol.26
, pp. 81-93
-
-
Fenichel, N.1
-
27
-
-
0003483215
-
-
Applied Mathematical Sciences Springer-Verlag New York
-
S. Wiggins Global Bifurcations and Chaos Applied Mathematical Sciences vol. 73 1988 Springer-Verlag New York
-
(1988)
Global Bifurcations and Chaos
, vol.73
-
-
Wiggins, S.1
-
29
-
-
21844501994
-
N-pulse homoclinic orbits in perturbations of resonant hamiltonian systems
-
G. Haller, and S. Wiggins N-pulse homoclinic orbits in perturbations of resonant hamiltonian systems Arch. Ration. Mech. Anal. 130 1995 25 101
-
(1995)
Arch. Ration. Mech. Anal.
, vol.130
, pp. 25-101
-
-
Haller, G.1
Wiggins, S.2
-
30
-
-
0040719385
-
Multi-bump orbits to resonance bands
-
T.J. Kaper, and G. Kovacic Multi-bump orbits to resonance bands Trans. Amer. Math. Soc. 348 10 1996 3835 3887
-
(1996)
Trans. Amer. Math. Soc.
, vol.348
, Issue.10
, pp. 3835-3887
-
-
Kaper, T.J.1
Kovacic, G.2
-
31
-
-
0006963160
-
Towards global models near homoclinic tangencies of dissipative diffeomorphisms
-
H. Broer, C. Simó, and J.C. Tatjer Towards global models near homoclinic tangencies of dissipative diffeomorphisms Nonlinearity 11 1998 667 770
-
(1998)
Nonlinearity
, vol.11
, pp. 667-770
-
-
Broer, H.1
Simó, C.2
Tatjer, J.C.3
-
33
-
-
0000505572
-
The number of isolating integrals in systems with three degrees of freedom
-
C. Froeschlé The number of isolating integrals in systems with three degrees of freedom Astrophys. Space Sci. 14 1971 110 117
-
(1971)
Astrophys. Space Sci.
, vol.14
, pp. 110-117
-
-
Froeschlé, C.1
-
34
-
-
0035511358
-
A formal approximation of the splitting of separatrices in the classical Arnold's example of diffusion with two equal parameters
-
C. Simó, and C. Valls A formal approximation of the splitting of separatrices in the classical Arnold's example of diffusion with two equal parameters Nonlinearity 14 2001 1707 1760
-
(2001)
Nonlinearity
, vol.14
, pp. 1707-1760
-
-
Simó, C.1
Valls, C.2
-
35
-
-
84971996008
-
The splitting of separatrices for analytic diffeomorphisms
-
E. Fontich, and C. Simó The splitting of separatrices for analytic diffeomorphisms Ergod. Theory Dynam. Systems 10 1990 295 318
-
(1990)
Ergod. Theory Dynam. Systems
, vol.10
, pp. 295-318
-
-
Fontich, E.1
Simó, C.2
-
36
-
-
0033241455
-
A proof of the exponentially small transversality of the separatrices for the standard map
-
V.G. Gelfreich A proof of the exponentially small transversality of the separatrices for the standard map Comm. Math. Phys. 201 1 1999 155 216
-
(1999)
Comm. Math. Phys.
, vol.201
, Issue.1
, pp. 155-216
-
-
Gelfreich, V.G.1
|