메뉴 건너뛰기




Volumn 222, Issue , 2013, Pages 269-281

Multi-label ensemble based on variable pairwise constraint projection

Author keywords

Boosting; Constraint projection; Ensemble learning; Multi label classification; Variable pairwise constraints

Indexed keywords

BOOSTING; CONSTRAINT PROJECTION; ENSEMBLE LEARNING; MULTI-LABEL; PAIRWISE CONSTRAINTS;

EID: 84870054699     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2012.07.066     Document Type: Article
Times cited : (46)

References (53)
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer, and R. Kohavi An empirical comparison of voting classification algorithms: bagging, boosting, and variants Machine Learning 36 1-2 1999 105 139
    • (1999) Machine Learning , vol.36 , Issue.12 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 2 1996 123 140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 78449287890 scopus 로고    scopus 로고
    • Discovering multi-label temporal patterns in sequence databases
    • Y.-L. Chen, S.-Y. Wu, and Y.-C. Wang Discovering multi-label temporal patterns in sequence databases Information Sciences 181 3 2011 398 418
    • (2011) Information Sciences , vol.181 , Issue.3 , pp. 398-418
    • Chen, Y.-L.1    Wu, S.-Y.2    Wang, Y.-C.3
  • 9
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • W. Cheng, and E. Hüllermeier Combining instance-based learning and logistic regression for multilabel classification Machine Learning 76 2-3 2009 211 225
    • (2009) Machine Learning , vol.76 , Issue.23 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2
  • 10
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • T.G. Dietterich, S. Becker, Z. Ghahramani, MIT Press Cambridge, MA
    • A. Elisseeff, and J. Weston A kernel method for multi-labelled classification T.G. Dietterich, S. Becker, Z. Ghahramani, Advances in Neural Information Processing Systems (NIPS) vol. 14 2002 MIT Press Cambridge, MA 681 687
    • (2002) Advances in Neural Information Processing Systems (NIPS) , vol.14 , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 12
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative methods for multi-labeled classification
    • H. Dai, R. Srikant, C. Zhang, Springer Berlin
    • S. Godbole, and S. Sarawagi Discriminative methods for multi-labeled classification H. Dai, R. Srikant, C. Zhang, Lecture Notes in Artificial Intelligence vol. 3056 2004 Springer Berlin 22 30
    • (2004) Lecture Notes in Artificial Intelligence , vol.3056 , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 16
    • 84899033524 scopus 로고    scopus 로고
    • Maximal margin labeling for multi-topic text categorization
    • L.K. Saul, Y. Weiss, L. Bottou, MIT Press Cambridge, MA
    • H. Kazawa, T. Izumitani, H. Taira, and E. Maeda Maximal margin labeling for multi-topic text categorization L.K. Saul, Y. Weiss, L. Bottou, Advances in Neural Information Processing Systems vol. 17 2005 MIT Press Cambridge, MA 649 656
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 649-656
    • Kazawa, H.1    Izumitani, T.2    Taira, H.3    Maeda, E.4
  • 17
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation and active learning
    • G. Tesauro, D.S. Touretzky, T.K. Leen, MIT Press Cambridge, MA
    • A. Krogh, and J. Vedelsby Neural network ensembles, cross validation and active learning G. Tesauro, D.S. Touretzky, T.K. Leen, Advances in Neural Information Processing Systems 1995 MIT Press Cambridge, MA 231 238
    • (1995) Advances in Neural Information Processing Systems , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 19
    • 79957460742 scopus 로고    scopus 로고
    • Cost-sensitive multi-label learning for audio tag annotation and retrieval
    • H.-Yi Lo, J.-C. Wang, H.-M. Wang, and S.-D. Lin Cost-sensitive multi-label learning for audio tag annotation and retrieval IEEE Transactions on Multimedia 13 3 2011 518 529
    • (2011) IEEE Transactions on Multimedia , vol.13 , Issue.3 , pp. 518-529
    • Lo, H.-Y.1    Wang, J.-C.2    Wang, H.-M.3    Lin, S.-D.4
  • 20
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
    • N. Loris, and L. Alessandra An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring Experts Systems with Applications 36 2009 3028 3033
    • (2009) Experts Systems with Applications , vol.36 , pp. 3028-3033
    • Loris, N.1    Alessandra, L.2
  • 22
    • 79551665221 scopus 로고    scopus 로고
    • Ensemble learning with active example selection for imbalanced biomedical data classification
    • S. Oh, M. Lee, and B. Zhang Ensemble learning with active example selection for imbalanced biomedical data classification IEEE/ACM Transactions on Computational Biology and Bioinformatics 8 2 2011 316 325
    • (2011) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.8 , Issue.2 , pp. 316-325
    • Oh, S.1    Lee, M.2    Zhang, B.3
  • 24
    • 35348915328 scopus 로고    scopus 로고
    • Classifier ensembles: Select real-world applications
    • N.C. Oza, and K. Tumer Classifier ensembles: select real-world applications Information Fusion 9 2008 4 20
    • (2008) Information Fusion , vol.9 , pp. 4-20
    • Oza, N.C.1    Tumer, K.2
  • 30
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • R.E. Schapire, and Y. Singer Boostexter: a boosting-based system for text categorization Machine Learning 39 2000 135 168
    • (2000) Machine Learning , vol.39 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 32
    • 34548481316 scopus 로고    scopus 로고
    • Subspace ensembles for classification
    • S.-L. Sun, and C.-S. Zhang Subspace ensembles for classification Physica A 385 2007 199 207
    • (2007) Physica A , vol.385 , pp. 199-207
    • Sun, S.-L.1    Zhang, C.-S.2
  • 37
    • 77649233903 scopus 로고    scopus 로고
    • Committees of Adaboost ensembles with modified emphasis functions
    • G.V. Vanessa, A.G. Jeronimo, and F.V. Aniibal Committees of Adaboost ensembles with modified emphasis functions Neurocomputing 73 2010 1289 1292
    • (2010) Neurocomputing , vol.73 , pp. 1289-1292
    • Vanessa, G.V.1    Jeronimo, A.G.2    Aniibal, F.V.3
  • 39
    • 79952984615 scopus 로고    scopus 로고
    • An improved multiple fuzzy NNC system based on mutual information and fuzzy integral
    • L.-J. Wang An improved multiple fuzzy NNC system based on mutual information and fuzzy integral International Journal of Machine Learning and Cybernetics 1 2 2011 25 36
    • (2011) International Journal of Machine Learning and Cybernetics , vol.1 , Issue.2 , pp. 25-36
    • Wang, L.-J.1
  • 40
    • 67149088596 scopus 로고    scopus 로고
    • Improving generalization of fuzzy if-then rules by maximizing fuzzy entropy
    • X.-Z. Wang, and C.-R. Dong Improving generalization of fuzzy if-then rules by maximizing fuzzy entropy IEEE Transactions on Fuzzy Systems 17 3 2009 556 567
    • (2009) IEEE Transactions on Fuzzy Systems , vol.17 , Issue.3 , pp. 556-567
    • Wang, X.-Z.1    Dong, C.-R.2
  • 41
    • 45649085354 scopus 로고    scopus 로고
    • Induction of multiple fuzzy decision trees based on rough set technique
    • X.-Z. Wang, J.-H. Zhai, and S.-X. Lu Induction of multiple fuzzy decision trees based on rough set technique Information Sciences 178 16 2008 3188 3202
    • (2008) Information Sciences , vol.178 , Issue.16 , pp. 3188-3202
    • Wang, X.-Z.1    Zhai, J.-H.2    Lu, S.-X.3
  • 43
    • 79251598720 scopus 로고    scopus 로고
    • Ensemble of feature sets and classification algorithms for sentiment classification
    • R. Xia, C. Zong, and S. Li Ensemble of feature sets and classification algorithms for sentiment classification Information Sciences 181 6 2011 1138 1152
    • (2011) Information Sciences , vol.181 , Issue.6 , pp. 1138-1152
    • Xia, R.1    Zong, C.2    Li, S.3
  • 44
    • 77958150674 scopus 로고    scopus 로고
    • A dynamic classifier ensemble selection approach for noise data
    • J. Xiao, C. He, X. Jiang, and D. Liu A dynamic classifier ensemble selection approach for noise data Information Sciences 180 18 2010 3402 3421
    • (2010) Information Sciences , vol.180 , Issue.18 , pp. 3402-3421
    • Xiao, J.1    He, C.2    Jiang, X.3    Liu, D.4
  • 46
    • 33748366796 scopus 로고    scopus 로고
    • Multi-label neural networks with applications to functional genomics and text categorization
    • M.-L. Zhang, and Z.-H. Zhou Multi-label neural networks with applications to functional genomics and text categorization IEEE Transactions on Knowledge and Data Engineering 18 10 2006 1338 1351
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 47
    • 33947681316 scopus 로고    scopus 로고
    • ML-knn: A lazy learning approach to multi-label learning
    • M.-L. Zhang, and Z.-H. Zhou ML-knn: a lazy learning approach to multi-label learning Pattern Recognition 40 7 2007 2038 2048
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 48
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive Bayes classification
    • M.-L. Zhang, J.M. Pena, and V. Robles Feature selection for multi-label naive Bayes classification Information Sciences 179 19 2009 3218 3229
    • (2009) Information Sciences , vol.179 , Issue.19 , pp. 3218-3229
    • Zhang, M.-L.1    Pena, J.M.2    Robles, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.