-
1
-
-
77957560335
-
Nanostructured thermoelectrics: Big efficiency gains from small features
-
10.1002/adma.201000839 0935-9648
-
Vineis C J, Shakouri A, Majumdar A and Kanatzidis M G 2010 Nanostructured thermoelectrics: big efficiency gains from small features Adv. Mater. 22 3970-80
-
(2010)
Adv. Mater.
, vol.22
, Issue.36
, pp. 3970-3980
-
-
Vineis, C.J.1
Shakouri, A.2
Majumdar, A.3
Kanatzidis, M.G.4
-
2
-
-
0035846181
-
Thin-film thermoelectric devices with high room-temperature figures of merit
-
10.1038/35098012 0028-0836
-
Venkatasubramanian R, Siivola E, Colpitts T and O'Quinn B 2001 Thin-film thermoelectric devices with high room-temperature figures of merit Nature 413 597-602
-
(2001)
Nature
, vol.413
, Issue.6856
, pp. 597-602
-
-
Venkatasubramanian, R.1
Siivola, E.2
Colpitts, T.3
O'Quinn, B.4
-
3
-
-
0029798050
-
The best thermoelectric
-
10.1073/pnas.93.15.7436 0027-8424
-
Mahan G D and Sofo J O 1996 The best thermoelectric Proc. Natl. Acad. Sci. USA 93 7436-9
-
(1996)
Proc. Natl. Acad. Sci. USA
, vol.93
, Issue.15
, pp. 7436-7439
-
-
Mahan, G.D.1
Sofo, J.O.2
-
4
-
-
35949006143
-
Thermoelectric figure of merit of a one-dimensional conductor
-
10.1103/PhysRevB.47.16631 0163-1829 B
-
Hicks L D and Dresselhaus M S 1993 Thermoelectric figure of merit of a one-dimensional conductor Phys. Rev. B 47 16631-4
-
(1993)
Phys. Rev.
, vol.47
, Issue.24
, pp. 16631-16634
-
-
Hicks, L.D.1
Dresselhaus, M.S.2
-
5
-
-
0032614901
-
Theoretical modeling of thermoelectricity in Bi nanowires
-
10.1063/1.123242 0003-6951
-
Sun X, Zhang Z and Dresselhaus M S 1999 Theoretical modeling of thermoelectricity in Bi nanowires Appl. Phys. Lett. 74 4005-7
-
(1999)
Appl. Phys. Lett.
, vol.74
, Issue.26
, pp. 4005-4007
-
-
Sun, X.1
Zhang, Z.2
Dresselhaus, M.S.3
-
6
-
-
84856956591
-
Very high thermopower of Bi nanowires with embedded quantum point contacts
-
10.1021/nl2038425 1530-6984
-
Shapira E, Holtzman A, Marchak D and Selzer Y 2012 Very high thermopower of Bi nanowires with embedded quantum point contacts Nano Lett. 12 808-12
-
(2012)
Nano Lett.
, vol.12
, Issue.2
, pp. 808-812
-
-
Shapira, E.1
Holtzman, A.2
Marchak, D.3
Selzer, Y.4
-
7
-
-
61449262858
-
Fabrication of very high aspect ratio metal nanowires by a self-propulsion mechanism
-
10.1021/nl073410v 1530-6984
-
Sharabani R, Reuveni S, Noy G, Shapira E, Sadeh S and Selzer Y 2008 Fabrication of very high aspect ratio metal nanowires by a self-propulsion mechanism Nano Lett. 8 1169-73
-
(2008)
Nano Lett.
, vol.8
, Issue.4
, pp. 1169-1173
-
-
Sharabani, R.1
Reuveni, S.2
Noy, G.3
Shapira, E.4
Sadeh, S.5
Selzer, Y.6
-
8
-
-
24144433427
-
Controlled fabrication of poly- and single-crystalline bismuth nanowires
-
0957-4484 020
-
Cornelius T W, Brotz J, Chtanko N, Dobrev D, Miehe G, Neumann R and Mollares M E T 2005 Controlled fabrication of poly- and single-crystalline bismuth nanowires Nanotechnology 16 S246-9
-
(2005)
Nanotechnology
, vol.16
, Issue.5
-
-
Cornelius, T.W.1
Brotz, J.2
Chtanko, N.3
Dobrev, D.4
Miehe, G.5
Neumann, R.6
Mollares, M.E.T.7
-
9
-
-
0034826522
-
Ordered single-crystalline Bi nanowire arrays embedded in nanochannels of anodic alumina membranes
-
10.1088/0022-3727/34/3/328 0022-3727
-
Wang X F, Zhang L D, Zhang J, Shi H Z, Peng X S, Zheng M J, Fang J, Chen J L and Gao B J 2001 Ordered single-crystalline Bi nanowire arrays embedded in nanochannels of anodic alumina membranes J. Phys. D: Appl. Phys 34 418-21
-
(2001)
J. Phys. D: Appl. Phys
, vol.34
, Issue.3
, pp. 418-421
-
-
Wang, X.F.1
Zhang, L.D.2
Zhang, J.3
Shi, H.Z.4
Peng, X.S.5
Zheng, M.J.6
Fang, J.7
Chen, J.L.8
Gao, B.J.9
-
10
-
-
36549099049
-
Thermal conductivity measurements from 30 to 750 K: The three omega method
-
10.1063/1.1141498 0034-6748
-
Cahil D 1990 Thermal conductivity measurements from 30 to 750 K: the three omega method Rev. Sci. Instrum. 61 802-8
-
(1990)
Rev. Sci. Instrum.
, vol.61
, Issue.2
, pp. 802-808
-
-
Cahil, D.1
-
11
-
-
0035397356
-
Three Omega method for specific heat and thermal conductivity measurements
-
10.1063/1.1378340 0034-6748
-
Lu L, Yi W and Zhang D L 2001 Three Omega method for specific heat and thermal conductivity measurements Rev. Sci. Instrum. 72 2996-3003
-
(2001)
Rev. Sci. Instrum.
, vol.72
, Issue.7
, pp. 2996-3003
-
-
Lu, L.1
Yi, W.2
Zhang, D.L.3
-
12
-
-
33748295791
-
Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-omega method
-
10.1021/nl060331v 1530-6984
-
Choi T Y, Poulikakos D, Tharian J and Sennhauser U 2006 Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-omega method Nano Lett. 6 1589-93
-
(2006)
Nano Lett.
, vol.6
, Issue.8
, pp. 1589-1593
-
-
Choi, T.Y.1
Poulikakos, D.2
Tharian, J.3
Sennhauser, U.4
-
13
-
-
69149105199
-
Thermal conductivity suppression in bismuth nanowires
-
10.1063/1.3191657 0021-8979 034310
-
Moore A L, Pettes M T, Zhou F and Shi L 2009 Thermal conductivity suppression in bismuth nanowires J. Appl. Phys. 106 034310
-
(2009)
J. Appl. Phys.
, vol.106
, Issue.3
-
-
Moore, A.L.1
Pettes, M.T.2
Zhou, F.3
Shi, L.4
-
14
-
-
80051492648
-
Observation of anisotropy in thermal conductivity of individual single-crystalline bismuth nanowires
-
10.1021/nn200474d 1936-0851
-
Roh J W, Hippalgaonkar K, Ham J H, Chen R K, Li M Z, Ercius P, Majumdar A, Kim W and Lee W 2011 Observation of anisotropy in thermal conductivity of individual single-crystalline bismuth nanowires ACS Nano 5 3954-60
-
(2011)
ACS Nano
, vol.5
, Issue.5
, pp. 3954-3960
-
-
Roh, J.W.1
Hippalgaonkar, K.2
Ham, J.H.3
Chen, R.K.4
Li, M.Z.5
Ercius, P.6
Majumdar, A.7
Kim, W.8
Lee, W.9
-
15
-
-
1842738130
-
Thermal conductivity of nanoporous bismuth thin films
-
10.1063/1.1682679 0003-6951
-
Song D W, Shen W N, Dunn B, Moore C D, Goorsky M S, Radetic T, Gronsky R and Chen G 2004 Thermal conductivity of nanoporous bismuth thin films Appl. Phys. Lett. 84 1883-5
-
(2004)
Appl. Phys. Lett.
, vol.84
, Issue.11
, pp. 1883-1885
-
-
Song, D.W.1
Shen, W.N.2
Dunn, B.3
Moore, C.D.4
Goorsky, M.S.5
Radetic, T.6
Gronsky, R.7
Chen, G.8
-
16
-
-
0034896077
-
Effect of surface roughness on the universal thermal conductance
-
10.1103/PhysRevB.63.184306 0163-1829 B 184306
-
Santamore D H and Cross M C 2001 Effect of surface roughness on the universal thermal conductance Phys. Rev. B 63 184306
-
(2001)
Phys. Rev.
, vol.63
, Issue.18
-
-
Santamore, D.H.1
Cross, M.C.2
-
18
-
-
0001293162
-
Lower limit to the thermal-conductivity of disordered crystals
-
10.1103/PhysRevB.46.6131 0163-1829 B
-
Cahill D G, Watson S K and Pohl R O 1992 Lower limit to the thermal-conductivity of disordered crystals Phys. Rev. B 46 6131-40
-
(1992)
Phys. Rev.
, vol.46
, Issue.10
, pp. 6131-6140
-
-
Cahill, D.G.1
Watson, S.K.2
Pohl, R.O.3
-
19
-
-
33847133444
-
Elastic-constants of bismuth-antimony alloy single-crystals
-
10.1088/0022-3719/9/6/012 0022-3719
-
Lichnowski A J and Saunders G A 1976 Elastic-constants of bismuth-antimony alloy single-crystals J. Phys. C: Solid State Phys. 9 927-38
-
(1976)
J. Phys. C: Solid State Phys.
, vol.9
, Issue.6
, pp. 927-938
-
-
Lichnowski, A.J.1
Saunders, G.A.2
-
20
-
-
77949352941
-
Phonon scattering and velocity considerations in the minimum phonon thermal conductivity of layered solids above the plateau
-
10.1080/15567261003601805 1556-7265
-
Hopkins P E and Beechem T E 2010 Phonon scattering and velocity considerations in the minimum phonon thermal conductivity of layered solids above the plateau Nanoscale Microscale Thermophys. Eng. 14 51-61
-
(2010)
Nanoscale Microscale Thermophys. Eng.
, vol.14
, Issue.1
, pp. 51-61
-
-
Hopkins, P.E.1
Beechem, T.E.2
|