|
Volumn 7588 LNCS, Issue , 2012, Pages 86-93
|
A novel 3D joint MGRF framework for precise lung segmentation
|
Author keywords
[No Author keywords available]
|
Indexed keywords
BAYESIAN FUSION;
COMPUTED TOMOGRAPHY;
CT IMAGE;
DATA GENERATION;
EXECUTION TIME;
GAUSSIAN KERNELS;
GAUSSIAN SCALE SPACE;
GAUSSIANS;
IMAGE SIGNAL;
INITIAL SEGMENTATION;
LINEAR COMBINATIONS;
LUNG REGIONS;
LUNG SEGMENTATION;
LUNG TISSUE;
MARKOV-GIBBS RANDOM FIELDS;
NVIDIA GRAPHICS;
REAL DATA SETS;
SIMILARITY COEFFICIENTS;
SINGLE-THREADED;
BIOLOGICAL ORGANS;
COMPUTER GRAPHICS;
GAUSSIAN DISTRIBUTION;
HISTOLOGY;
ITERATIVE METHODS;
LEARNING SYSTEMS;
MEDICAL IMAGING;
PROGRAM PROCESSORS;
TISSUE;
COMPUTERIZED TOMOGRAPHY;
|
EID: 84870045425
PISSN: 03029743
EISSN: 16113349
Source Type: Book Series
DOI: 10.1007/978-3-642-35428-1_11 Document Type: Conference Paper |
Times cited : (40)
|
References (13)
|