-
3
-
-
0033098238
-
A method for visualization of invariant sets of dynamical systems based on the ergodic partition
-
I. Mezić, and S. Wiggins A method for visualization of invariant sets of dynamical systems based on the ergodic partition Chaos 9 1 1999 213 218
-
(1999)
Chaos
, vol.9
, Issue.1
, pp. 213-218
-
-
Mezić, I.1
Wiggins, S.2
-
4
-
-
84977562613
-
Ergodic theory and visualization. I. Mesochronic plots for visualization of ergodic partition and invariant sets
-
Z. Levnajić, and I. Mezić Ergodic theory and visualization. I. Mesochronic plots for visualization of ergodic partition and invariant sets Chaos 20 2010 033114
-
(2010)
Chaos
, vol.20
, pp. 033114
-
-
Levnajić, Z.1
Mezić, I.2
-
5
-
-
84861828560
-
Geometry of the ergodic quotient reveals coherent structures in flows
-
M. Budišić, and I. Mezić Geometry of the ergodic quotient reveals coherent structures in flows Physica D 2012
-
(2012)
Physica D
-
-
Budišić, M.1
Mezić, I.2
-
6
-
-
0001046226
-
Hamiltonian systems and transformation in Hilbert space
-
B.O. Koopman Hamiltonian systems and transformation in Hilbert space Proc. Natl. Acad. Sci. USA 17 5 1931 315
-
(1931)
Proc. Natl. Acad. Sci. USA
, vol.17
, Issue.5
, pp. 315
-
-
Koopman, B.O.1
-
7
-
-
4544335073
-
Comparison of systems with complex behavior
-
I. Mezić, and A. Banaszuk Comparison of systems with complex behavior Physica D 197 1 2004 101 133
-
(2004)
Physica D
, vol.197
, Issue.1
, pp. 101-133
-
-
Mezić, I.1
Banaszuk, A.2
-
8
-
-
0041546089
-
Linearization of normally hyperbolic diffeomorphisms and flows
-
C.C. Pugh, and M. Shub Linearization of normally hyperbolic diffeomorphisms and flows Invent. Math. 10 1970 187
-
(1970)
Invent. Math.
, vol.10
, pp. 187
-
-
Pugh, C.C.1
Shub, M.2
-
9
-
-
0000213086
-
Topological equivalence of normally hyperbolic dynamicsl systems
-
J. Palis, and F. Takens Topological equivalence of normally hyperbolic dynamicsl systems Topology 16 1977 335
-
(1977)
Topology
, vol.16
, pp. 335
-
-
Palis, J.1
Takens, F.2
-
10
-
-
34250108873
-
Normal hyperbolicity and linearizability
-
S.J. van Strien Normal hyperbolicity and linearizability Invent. Math. 87 1987 377
-
(1987)
Invent. Math.
, vol.87
, pp. 377
-
-
Van Strien, S.J.1
-
11
-
-
84968509239
-
A lemma in the theory of structural stability of differential equations
-
P. Hartman A lemma in the theory of structural stability of differential equations Proc. Amer. Math. Soc. 11 1960 610
-
(1960)
Proc. Amer. Math. Soc.
, vol.11
, pp. 610
-
-
Hartman, P.1
-
12
-
-
0001463792
-
Homeomorphisms of systems of differential equations
-
D. Grobman Homeomorphisms of systems of differential equations Dokl. Akad. Nauk SSSR 128 1959 880
-
(1959)
Dokl. Akad. Nauk SSSR
, vol.128
, pp. 880
-
-
Grobman, D.1
-
13
-
-
84972499909
-
Cn contractions of the real line
-
Cn contractions of the real line Duke Math. J. 24 1957 97
-
(1957)
Duke Math. J.
, vol.24
, pp. 97
-
-
Sternberg, S.1
-
15
-
-
0000771490
-
A generalization of Hartman's linearization theorem
-
K.J. Palmer A generalization of Hartman's linearization theorem J. Math. Anal. Appl. 41 1973 752
-
(1973)
J. Math. Anal. Appl.
, vol.41
, pp. 752
-
-
Palmer, K.J.1
-
16
-
-
29944443586
-
On Hartman's linearization theorem and Palmer's linearization theorem
-
J. Shi, and K. Xiong On Hartman's linearization theorem and Palmer's linearization theorem J. Math. Anal. Appl. 192 1995 813 832
-
(1995)
J. Math. Anal. Appl.
, vol.192
, pp. 813-832
-
-
Shi, J.1
Xiong, K.2
-
17
-
-
34147112389
-
Strongly topological linearization with generalized exponential dichotomy
-
L. Jiang Strongly topological linearization with generalized exponential dichotomy Nonlinear Anal. 67 2006 1102
-
(2006)
Nonlinear Anal.
, vol.67
, pp. 1102
-
-
Jiang, L.1
-
19
-
-
21344439584
-
Non-perturbative linearization of dynamical systems
-
G. Gaeta, and G. Marmo Non-perturbative linearization of dynamical systems J. Phys. A: Math. Gen. 29 1996 5035 5048
-
(1996)
J. Phys. A: Math. Gen.
, vol.29
, pp. 5035-5048
-
-
Gaeta, G.1
Marmo, G.2
-
20
-
-
85113502034
-
On the complete integrability and linearization of nonlinear ordinary differential equations - Part II: Third order equations
-
V.K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan On the complete integrability and linearization of nonlinear ordinary differential equations - part II: third order equations Proc. R. Soc. Lond. Ser. A 461 2005 2451
-
(2005)
Proc. R. Soc. Lond. Ser. A
, vol.461
, pp. 2451
-
-
Chandrasekar, V.K.1
Senthilvelan, M.2
Lakshmanan, M.3
-
22
-
-
0001018397
-
Asymptotic stability equals exponential stability, and ISS equals finite energy gain - If you twist your eyes
-
L. Grüne, E.D. Sontag, and F.R. Wirth Asymptotic stability equals exponential stability, and ISS equals finite energy gain - if you twist your eyes Syst. Control Lett. 38 2 1999 127 134
-
(1999)
Syst. Control Lett.
, vol.38
, Issue.2
, pp. 127-134
-
-
Grüne, L.1
Sontag, E.D.2
Wirth, F.R.3
-
23
-
-
33750622483
-
Hartmans linearization on nonautonomous unbounded system
-
F. Lin Hartmans linearization on nonautonomous unbounded system Nonlinear Anal. 66 1 2007 38
-
(2007)
Nonlinear Anal.
, vol.66
, Issue.1
, pp. 38
-
-
Lin, F.1
-
24
-
-
0035254462
-
Global topological linearization in critical case
-
J. Shi Global topological linearization in critical case Nonlinear Anal. 43 4 2001 509
-
(2001)
Nonlinear Anal.
, vol.43
, Issue.4
, pp. 509
-
-
Shi, J.1
-
25
-
-
34147112389
-
Ordinary dichotomy and global linearization
-
L. Jiang Ordinary dichotomy and global linearization Nonlinear Anal. 67 4 2007 1102
-
(2007)
Nonlinear Anal.
, vol.67
, Issue.4
, pp. 1102
-
-
Jiang, L.1
-
35
-
-
84866924926
-
On the use of Fourier averages to compute the global isochrons of (quasi) periodic dynamics
-
A. Mauroy, and I. Mezić On the use of Fourier averages to compute the global isochrons of (quasi) periodic dynamics Chaos 22 3 2012 033112
-
(2012)
Chaos
, vol.22
, Issue.3
, pp. 033112
-
-
Mauroy, A.1
Mezić, I.2
|