메뉴 건너뛰기




Volumn 15, Issue 4, 2012, Pages 495-511

Emotion recognition from speech using sub-syllabic and pitch synchronous spectral features

Author keywords

Consonant region; CV transition region; Emotion recognition; Pitch synchronous analysis; Spectral features; Vowel onset point; Vowel region

Indexed keywords

CONSONANT REGION; EMOTION RECOGNITION; PITCH SYNCHRONOUS ANALYSIS; SPECTRAL FEATURE; TRANSITION REGIONS; VOWEL ONSET POINT; VOWEL REGION;

EID: 84869495918     PISSN: 13812416     EISSN: 15728110     Source Type: Journal    
DOI: 10.1007/s10772-012-9150-8     Document Type: Article
Times cited : (39)

References (60)
  • 1
    • 77956401353 scopus 로고    scopus 로고
    • Class-level spectral features for emotion recognition
    • Bitouk, D., Verma, R., & Nenkova, A. (2010). Class-level spectral features for emotion recognition. Speech Communication, 52, 613-625.
    • (2010) Speech Communication , vol.52 , pp. 613-625
    • Bitouk, D.1    Verma, R.2    Nenkova, A.3
  • 5
    • 0442326756 scopus 로고    scopus 로고
    • Recognition of noisy speech using dynamic spectral subband centroids
    • February
    • Chen, J., Huang, Y. A., Li, Q., & Paliwal, K. K. (2004). Recognition of noisy speech using dynamic spectral subband centroids. IEEE Signal Processing Letters, 11, 258-261 (February 2004).
    • (2004) IEEE Signal Processing Letters , vol.11 , pp. 258-261
    • Chen, J.1    Huang, Y.A.2    Li, Q.3    Paliwal, K.K.4
  • 9
    • 84869508610 scopus 로고    scopus 로고
    • Detection of vowel on set points in continuous speech using auto-associative neural network models
    • In . New York: IEEE Press
    • Gangashetty, S. V., Sekhar, C. C., & Yegnanarayana, B. (2004). Detection of vowel on set points in continuous speech using auto-associative neural network models. In INTERSPEECH. New York: IEEE Press.
    • (2004) Interspeech
    • Gangashetty, S.V.1    Sekhar, C.C.2    Yegnanarayana, B.3
  • 10
    • 33745477715 scopus 로고    scopus 로고
    • Spotting multilingual consonant-vowel units of speech using neural network models
    • In M. Faundez-Zanuy (Ed.), (pp. ). Berlin: Springer
    • Gangashetty, S. V., Sekhar, C. C., & Yegnanarayana, B. (2005). Spotting multilingual consonant-vowel units of speech using neural network models. In M. Faundez-Zanuy (Ed.), NOLISP (pp. 303-317). Berlin: Springer.
    • (2005) Nolisp , pp. 303-317
    • Gangashetty, S.V.1    Sekhar, C.C.2    Yegnanarayana, B.3
  • 11
    • 0036082789 scopus 로고    scopus 로고
    • Autoassociative neural network models for online speaker verification using source features from vowels
    • In , USA, May 2002
    • Gupta, C. S., Prasanna, S. R. M., & Yegnanarayana, B. (2002). Autoassociative neural network models for online speaker verification using source features from vowels. In Int. joint conf. neural networks, Honululu, Hawii, USA, May 2002.
    • (2002) Int. Joint Conf. Neural Networks, Honululu, Hawii
    • Gupta, C.S.1    Prasanna, S.R.M.2    Yegnanarayana, B.3
  • 13
    • 33749580033 scopus 로고    scopus 로고
    • Robust recognition of emotion from speech
    • In Intelligent virtual agents (pp. ). Berlin: Springer
    • Hoque, M. E., Yeasin, M., & Louwerse, M. M. (2006). Robust recognition of emotion from speech. In Lecture notes in computer science. Intelligent virtual agents (pp. 42-53). Berlin: Springer.
    • (2006) Lecture Notes in Computer Science. , pp. 42-53
    • Hoque, M.E.1    Yeasin, M.2    Louwerse, M.M.3
  • 15
    • 77950073346 scopus 로고    scopus 로고
    • Spoken emotion recognition through optimum-path forest classification using glottal features
    • Iliev, A. I., Scordilis, M. S., Papa, J. P., & Falco, A. X. (2010). Spoken emotion recognition through optimum-path forest classification using glottal features. Computer Speech and Language, 24(3), 445-460.
    • (2010) Computer Speech and Language , vol.24 , Issue.3 , pp. 445-460
    • Iliev, A.I.1    Scordilis, M.S.2    Papa, J.P.3    Falco, A.X.4
  • 17
    • 0034862114 scopus 로고    scopus 로고
    • Online text-independent speaker verification system using autoassociative neural network models
    • In , Washington, USA, August 2001 (pp
    • Kishore, S. P., & Yegnanarayana, B. (2001). Online text-independent speaker verification system using autoassociative neural network models. In Int. joint conf. neural networks (V2), Washington, USA, August 2001 (pp. 1548-1553).
    • (2001) Int. Joint Conf. Neural Networks (V2) , pp. 1548-1553
    • Kishore, S.P.1    Yegnanarayana, B.2
  • 19
    • 76249109428 scopus 로고    scopus 로고
    • Exploring speech features for classifying emotions along valence dimension
    • In . The 3rd international conference on pattern recognition and machine intelligence (PReMI-09
    • Koolagudi, S. G., & Rao, K. S. (2009). Exploring speech features for classifying emotions along valence dimension. In Springer LNCS. The 3rd international conference on pattern recognition and machine intelligence (PReMI-09).
    • (2009) Springer LNCS
    • Koolagudi, S.G.1    Rao, K.S.2
  • 23
    • 85009223246 scopus 로고    scopus 로고
    • Emotion recognition by speech signals
    • In (pp
    • Kwon, O., Chan, K., Hao, J., & Lee, T. (2003). Emotion recognition by speech signals. In Eurospeech, Geneva (pp. 125-128).
    • (2003) Eurospeech, Geneva , pp. 125-128
    • Kwon, O.1    Chan, K.2    Hao, J.3    Lee, T.4
  • 25
    • 79959831679 scopus 로고    scopus 로고
    • Significance of pitch synchronous analysis for speaker recognition using AANN models
    • In , Makuhari, Japan, September 2010
    • Mallidi, S. H. R., Prahallad, K., Gangashetty, S. V., & Yegnanarayana, B. (2010). Significance of pitch synchronous analysis for speaker recognition using AANN models. In INTERSPEECH-2010, Makuhari, Japan, September 2010.
    • (2010) Interspeech-2010
    • Mallidi, S.H.R.1    Prahallad, K.2    Gangashetty, S.V.3    Yegnanarayana, B.4
  • 32
    • 38749103707 scopus 로고    scopus 로고
    • Emotion recognition in spontaneous speech using GMMs
    • In , Pittsburgh, Pennsylvania, 17-19 September 2006 (pp
    • Neiberg, D., Elenius, K., & Laskowski, K. (2006). Emotion recognition in spontaneous speech using GMMs. In INTERSPEECH 2006 - ICSLP, Pittsburgh, Pennsylvania, 17-19 September 2006 (pp. 809-812).
    • (2006) Interspeech 2006 - ICSLP , pp. 809-812
    • Neiberg, D.1    Elenius, K.2    Laskowski, K.3
  • 34
    • 33646758219 scopus 로고    scopus 로고
    • Combining acoustic features for improved emotion recognition in Mandarin speech
    • In J. Tao, T. Tan & R. Picard (Eds.), (pp. ). Berlin: Springer
    • Pao, T. L., Chen, Y. T., Yeh, J. H., & Liao, W. Y. (2005). Combining acoustic features for improved emotion recognition in Mandarin speech. In J. Tao, T. Tan & R. Picard (Eds.), LNCS. ACII (pp. 279-285). Berlin: Springer.
    • (2005) Lncs. Acii , pp. 279-285
    • Pao, T.L.1    Chen, Y.T.2    Yeh, J.H.3    Liao, W.Y.4
  • 38
    • 33748443739 scopus 로고    scopus 로고
    • Extraction of speaker-specific excitation information from linear prediction residual of speech
    • Prasannaa, S. M., Gupta, C. S., & Yegnanarayana, B. (2006). Extraction of speaker-specific excitation information from linear prediction residual of speech. Speech Communication, 48, 1243-1261.
    • (2006) Speech Communication , vol.48 , pp. 1243-1261
    • Prasannaa, S.M.1    Gupta, C.S.2    Yegnanarayana, B.3
  • 41
    • 77950029338 scopus 로고    scopus 로고
    • Voice conversion by mapping the speaker-specific features using pitch synchronous approach
    • Rao, K. S. (2010). Voice conversion by mapping the speaker-specific features using pitch synchronous approach. Computer Speech and Language, 24, 474-494.
    • (2010) Computer Speech and Language , vol.24 , pp. 474-494
    • Rao, K.S.1
  • 42
    • 79953168002 scopus 로고    scopus 로고
    • Application of prosody models for developing speech systems in Indian languages
    • Rao, K. S. (2011a). Application of prosody models for developing speech systems in Indian languages. International Journal of Speech Technology, 14, 19-33.
    • (2011) International Journal of Speech Technology , vol.14 , pp. 19-33
    • Rao, K.S.1
  • 43
    • 84856289513 scopus 로고    scopus 로고
    • Role of neural network models for developing speech systems
    • b). Sadhana
    • Rao, K. S. (2011b). Role of neural network models for developing speech systems. Sadhana (Springer), 36, 783-836.
    • (2011) Springer , vol.36 , pp. 783-836
    • Rao, K.S.1
  • 44
    • 84869490965 scopus 로고    scopus 로고
    • Identification of Hindi dialects and emotions using spectral and prosodic features of speech
    • Rao, K. S., & Koolagudi, S. G. (2011). Identification of Hindi dialects and emotions using spectral and prosodic features of speech. Journal of Systemics, Cybernetics and Informatics, 9(4), 24-33.
    • (2011) Journal of Systemics, Cybernetics and Informatics , vol.9 , Issue.4 , pp. 24-33
    • Rao, K.S.1    Koolagudi, S.G.2
  • 46
    • 69949159711 scopus 로고    scopus 로고
    • Duration modification using glottal closure instants and vowel onset points
    • Rao, K. S., & Yegnanarayana, B. (2009). Duration modification using glottal closure instants and vowel onset points. Speech Communication, 51, 1263-1269.
    • (2009) Speech Communication , vol.51 , pp. 1263-1269
    • Rao, K.S.1    Yegnanarayana, B.2
  • 47
    • 84864576614 scopus 로고    scopus 로고
    • Source and system features for speaker recognition
    • Indian Institute of Technology Madras, Chennai 600 036, India 2004
    • Reddy, K. S. (2004). Source and system features for speaker recognition. Master's thesis, MS thesis, Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai 600 036, India 2004.
    • (2004) Master's Thesis, MS Thesis, Department of Computer Science and Engineering
    • Reddy, K.S.1
  • 48
    • 63049095964 scopus 로고    scopus 로고
    • Keyword spotting using vowel onset point, vector quantization and hiddenMarkovmodeling based techniques
    • In , Hyderabad. New York: IEEE Press
    • Reddy, B. V. S., Rao, K. V., & Prasanna, S. R. M. (2008). Keyword spotting using vowel onset point, vector quantization and hiddenMarkovmodeling based techniques. In TENCON 2008 - 2008 IEEE region 10 conference, IIIT, Hyderabad. New York: IEEE Press.
    • (2008) Tencon 2008 - 2008 IEEE Region 10 Conference, IIIT
    • Reddy, B.V.S.1    Rao, K.V.2    Prasanna, S.R.M.3
  • 49
    • 4544316885 scopus 로고    scopus 로고
    • Speech emotion recognition combining acoustic features and linguistic information in a hybrid support vector machine-belief network architecture
    • In (pp. ). New York: IEEE Press
    • Schuller, B., Rigoll, G., & Lang, M. (2004). Speech emotion recognition combining acoustic features and linguistic information in a hybrid support vector machine-belief network architecture. In Proc. IEEE int. conf. acoust., speech, signal processing (pp. 577-580). New York: IEEE Press.
    • (2004) Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing , pp. 577-580
    • Schuller, B.1    Rigoll, G.2    Lang, M.3
  • 51
    • 33746410556 scopus 로고    scopus 로고
    • Emotional speech recognition: Resources, features, and methods
    • Ververidis, D., & Kotropoulos, C. (2006). Emotional speech recognition: resources, features, and methods. Speech Communication, 48, 1162-1181.
    • (2006) Speech Communication , vol.48 , pp. 1162-1181
    • Ververidis, D.1    Kotropoulos, C.2
  • 52
    • 4544247331 scopus 로고    scopus 로고
    • Automatic emotional speech classification
    • In (pp. ). New York: IEEE Press
    • Ververidis, D., Kotropoulos, C., & Pitas, I. (2004). Automatic emotional speech classification. In ICASSP (pp. I593-I596). New York: IEEE Press.
    • (2004) Icassp
    • Ververidis, D.1    Kotropoulos, C.2    Pitas, I.3
  • 55
    • 70449580752 scopus 로고    scopus 로고
    • Automatic recognition of speech emotion using long-term spectro-temporal features
    • In , Santorini-Hellas, 5-7 July 2009 (pp. ). New York: IEEE Press
    • Wu, S., Falk, T. H., & Chan, W. Y. (2009). Automatic recognition of speech emotion using long-term spectro-temporal features. In 16th international conference on digital signal processing, Santorini-Hellas, 5-7 July 2009 (pp. 1-6). New York: IEEE Press.
    • (2009) 16th International Conference on Digital Signal Processing , pp. 1-6
    • Wu, S.1    Falk, T.H.2    Chan, W.Y.3
  • 57
    • 0035989168 scopus 로고    scopus 로고
    • AANN an alternative to GMM for pattern recognition
    • Yegnanarayana, B., & Kishore, S. P. (2002). AANN an alternative to GMM for pattern recognition. Neural Networks, 15, 459-469.
    • (2002) Neural Networks , vol.15 , pp. 459-469
    • Yegnanarayana, B.1    Kishore, S.P.2
  • 59
    • 0034856452 scopus 로고    scopus 로고
    • Source and system features for speaker recognition using AANN models
    • b). In , Salt Lake City, Utah, USA, May 2001 (pp
    • Yegnanarayana, B., Reddy, K. S., & Kishore, S. P. (2001b). Source and system features for speaker recognition using AANN models. In Proc. IEEE int. conf. acoust., speech, signal processing, Salt Lake City, Utah, USA, May 2001 (pp. 409-412).
    • (2001) Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing , pp. 409-412
    • Yegnanarayana, B.1    Reddy, K.S.2    Kishore, S.P.3
  • 60
    • 38049009485 scopus 로고    scopus 로고
    • Pitch synchronous analysis method and Fisher criterion based speaker identification
    • In , Washington D.C., USA (pp. ). Los Alamitos: IEEE Comput. Soc
    • Zeng, Y., Wu, H., & Gao, R. (2007). Pitch synchronous analysis method and Fisher criterion based speaker identification. In Third international conference on natural computation, Washington D.C., USA (pp. 691-695). Los Alamitos: IEEE Comput. Soc.
    • (2007) Third International Conference on Natural Computation , pp. 691-695
    • Zeng, Y.1    Wu, H.2    Gao, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.