메뉴 건너뛰기




Volumn 26, Issue 6, 2012, Pages 759-770

Mitochondrial sirtuins and metabolic homeostasis

Author keywords

deacetylase; energy homeostasis; metabolism; mitochondria; sirtuins

Indexed keywords

INSULIN; LIPID; SIRTUIN; SIRTUIN 1; SIRTUIN 3; SIRTUIN 4; SIRTUIN 5;

EID: 84869464949     PISSN: 1521690X     EISSN: 15321908     Source Type: Journal    
DOI: 10.1016/j.beem.2012.05.001     Document Type: Review
Times cited : (43)

References (106)
  • 2
    • 0021734287 scopus 로고
    • Characterization of two genes required for the position-effect control of yeast mating-type genes
    • D. Shore, M. Squire, and K.A. Nasmyth Characterization of two genes required for the position-effect control of yeast mating-type genes European Molecular Biology Organization Journal 3 1984 2817 2823
    • (1984) European Molecular Biology Organization Journal , vol.3 , pp. 2817-2823
    • Shore, D.1    Squire, M.2    Nasmyth, K.A.3
  • 3
    • 0033214237 scopus 로고    scopus 로고
    • The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
    • M. Kaeberlein, M. McVey, and L. Guarente The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms Genes and Development 13 1999 2570 2580
    • (1999) Genes and Development , vol.13 , pp. 2570-2580
    • Kaeberlein, M.1    McVey, M.2    Guarente, L.3
  • 4
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • S. Imai, C.M. Armstrong, and M. Kaeberlein Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase Nature 403 2000 795 800
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3
  • 6
    • 25144454432 scopus 로고    scopus 로고
    • Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice
    • K.A. Moynihan, A.A. Grimm, and M.M. Plueger Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice Cell Metabolism 2 2005 105 117
    • (2005) Cell Metabolism , vol.2 , pp. 105-117
    • Moynihan, K.A.1    Grimm, A.A.2    Plueger, M.M.3
  • 7
    • 31044445366 scopus 로고    scopus 로고
    • Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
    • R. Mostoslavsky, K.F. Chua, and D.B. Lombard Genomic instability and aging-like phenotype in the absence of mammalian SIRT6 Cell 124 2006 315 329
    • (2006) Cell , vol.124 , pp. 315-329
    • Mostoslavsky, R.1    Chua, K.F.2    Lombard, D.B.3
  • 8
    • 33744466971 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase i transcription
    • E. Ford, R. Voit, and G. Liszt Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription Genes and Development 20 2006 1075 1080
    • (2006) Genes and Development , vol.20 , pp. 1075-1080
    • Ford, E.1    Voit, R.2    Liszt, G.3
  • 9
    • 33646550204 scopus 로고    scopus 로고
    • SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
    • A. Vaquero, M.B. Scher, and D.H. Lee SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis Genes and Development 20 2006 1256 1261
    • (2006) Genes and Development , vol.20 , pp. 1256-1261
    • Vaquero, A.1    Scher, M.B.2    Lee, D.H.3
  • 10
    • 79958041304 scopus 로고    scopus 로고
    • Fine tuning our cellular factories: Sirtuins in mitochondrial biology
    • L. Zhong, and R. Mostoslavsky Fine tuning our cellular factories: sirtuins in mitochondrial biology Cell Metabolism 13 2011 621 626
    • (2011) Cell Metabolism , vol.13 , pp. 621-626
    • Zhong, L.1    Mostoslavsky, R.2
  • 12
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
    • M.C. Haigis, R. Mostoslavsky, and K.M. Haigis SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells Cell 126 2006 941 954
    • (2006) Cell , vol.126 , pp. 941-954
    • Haigis, M.C.1    Mostoslavsky, R.2    Haigis, K.M.3
  • 13
    • 20444409132 scopus 로고    scopus 로고
    • Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
    • G. Liszt, E. Ford, and M. Kurtev Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase Journal of Biological Chemistry 280 2005 21313 21320
    • (2005) Journal of Biological Chemistry , vol.280 , pp. 21313-21320
    • Liszt, G.1    Ford, E.2    Kurtev, M.3
  • 14
    • 41349090663 scopus 로고    scopus 로고
    • SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
    • E. Michishita, R.A. McCord, and E. Berber SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin Nature 452 2008 492 496
    • (2008) Nature , vol.452 , pp. 492-496
    • Michishita, E.1    McCord, R.A.2    Berber, E.3
  • 15
    • 83055173304 scopus 로고    scopus 로고
    • The first identification of lysine malonylation substrates and its regulatory enzyme
    • M111.012658
    • C. Peng, Z. Lu, and Z. Xie The first identification of lysine malonylation substrates and its regulatory enzyme Molecular and Cellular Proteomics 10 2011 M111.012658
    • (2011) Molecular and Cellular Proteomics , vol.10
    • Peng, C.1    Lu, Z.2    Xie, Z.3
  • 16
    • 81055122671 scopus 로고    scopus 로고
    • Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
    • J. Du, Y. Zhou, and X. Su Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase Science 334 2011 806 809
    • (2011) Science , vol.334 , pp. 806-809
    • Du, J.1    Zhou, Y.2    Su, X.3
  • 20
    • 26844558334 scopus 로고    scopus 로고
    • Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
    • E. Nisoli, C. Tonello, and A. Cardile Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS Science 310 2005 314 317
    • (2005) Science , vol.310 , pp. 314-317
    • Nisoli, E.1    Tonello, C.2    Cardile, A.3
  • 21
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
    • C. Canto, Z. Gerhart-Hines, and J.N. Feige AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity Nature 458 2009 1056 1060
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Canto, C.1    Gerhart-Hines, Z.2    Feige, J.N.3
  • 22
    • 77249156847 scopus 로고    scopus 로고
    • Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
    • C. Canto, L.Q. Jiang, and A.S. Deshmukh Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle Cell Metabolism 11 2010 213 219
    • (2010) Cell Metabolism , vol.11 , pp. 213-219
    • Canto, C.1    Jiang, L.Q.2    Deshmukh, A.S.3
  • 23
    • 79953752384 scopus 로고    scopus 로고
    • PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
    • P. Bai, C. Canto, and H. Oudart PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation Cell Metabolism 13 2011 461 468
    • (2011) Cell Metabolism , vol.13 , pp. 461-468
    • Bai, P.1    Canto, C.2    Oudart, H.3
  • 25
    • 10844236451 scopus 로고    scopus 로고
    • Nutrient availability regulates SIRT1 through a forkhead-dependent pathway
    • S. Nemoto, M.M. Fergusson, and T. Finkel Nutrient availability regulates SIRT1 through a forkhead-dependent pathway Science 306 2004 2105 2108
    • (2004) Science , vol.306 , pp. 2105-2108
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 27
    • 77953633702 scopus 로고    scopus 로고
    • PPARbeta/delta regulates the human SIRT1 gene transcription via Sp1
    • M. Okazaki, Y. Iwasaki, and M. Nishiyama PPARbeta/delta regulates the human SIRT1 gene transcription via Sp1 Endocrine Journal 57 2010 403 413
    • (2010) Endocrine Journal , vol.57 , pp. 403-413
    • Okazaki, M.1    Iwasaki, Y.2    Nishiyama, M.3
  • 28
    • 80053564714 scopus 로고    scopus 로고
    • CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability
    • L.G. Noriega, J.N. Feige, and C. Canto CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability European Molecular Biology Organization Reports 12 2011 1069 1076
    • (2011) European Molecular Biology Organization Reports , vol.12 , pp. 1069-1076
    • Noriega, L.G.1    Feige, J.N.2    Canto, C.3
  • 29
    • 78649852533 scopus 로고    scopus 로고
    • SIRT1 is regulated by a PPAR{gamma}-SIRT1 negative feedback loop associated with senescence
    • L. Han, R. Zhou, and J. Niu SIRT1 is regulated by a PPAR{gamma}-SIRT1 negative feedback loop associated with senescence Nucleic Acids Research 38 2010 7458 7471
    • (2010) Nucleic Acids Research , vol.38 , pp. 7458-7471
    • Han, L.1    Zhou, R.2    Niu, J.3
  • 30
    • 27544434763 scopus 로고    scopus 로고
    • Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
    • W.Y. Chen, D.H. Wang, and R.C. Yen Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses Cell 123 2005 437 448
    • (2005) Cell , vol.123 , pp. 437-448
    • Chen, W.Y.1    Wang, D.H.2    Yen, R.C.3
  • 31
    • 79953761260 scopus 로고    scopus 로고
    • PARP-2 regulates SIRT1 expression and whole-body energy expenditure
    • P. Bai, C. Canto, and A. Brunyanszki PARP-2 regulates SIRT1 expression and whole-body energy expenditure Cell Metabolism 13 2011 450 460
    • (2011) Cell Metabolism , vol.13 , pp. 450-460
    • Bai, P.1    Canto, C.2    Brunyanszki, A.3
  • 32
    • 77951210885 scopus 로고    scopus 로고
    • A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition
    • J. Lee, A. Padhye, and A. Sharma A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition Journal of Biological Chemistry 285 2010 12604 12611
    • (2010) Journal of Biological Chemistry , vol.285 , pp. 12604-12611
    • Lee, J.1    Padhye, A.2    Sharma, A.3
  • 33
    • 65249185780 scopus 로고    scopus 로고
    • Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes
    • S. Rane, M. He, and D. Sayed Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes Circulation Research 104 2009 879 886
    • (2009) Circulation Research , vol.104 , pp. 879-886
    • Rane, S.1    He, M.2    Sayed, D.3
  • 37
    • 77951225449 scopus 로고    scopus 로고
    • DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1
    • X. Guo, J.G. Williams, and T.T. Schug DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1 Journal of Biological Chemistry 285 2010 13223 13232
    • (2010) Journal of Biological Chemistry , vol.285 , pp. 13223-13232
    • Guo, X.1    Williams, J.G.2    Schug, T.T.3
  • 38
    • 0141719702 scopus 로고    scopus 로고
    • Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
    • K.T. Howitz, K.J. Bitterman, and H.Y. Cohen Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan Nature 425 2003 191 196
    • (2003) Nature , vol.425 , pp. 191-196
    • Howitz, K.T.1    Bitterman, K.J.2    Cohen, H.Y.3
  • 39
    • 77950348878 scopus 로고    scopus 로고
    • AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol
    • J.H. Um, S.J. Park, and H. Kang AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol Diabetes 59 2010 554 563
    • (2010) Diabetes , vol.59 , pp. 554-563
    • Um, J.H.1    Park, S.J.2    Kang, H.3
  • 40
    • 84863011114 scopus 로고    scopus 로고
    • Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases
    • S.J. Park, F. Ahmad, and A. Philp Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases Cell 148 2012 421 433
    • (2012) Cell , vol.148 , pp. 421-433
    • Park, S.J.1    Ahmad, F.2    Philp, A.3
  • 41
    • 33751072349 scopus 로고    scopus 로고
    • Resveratrol improves health and survival of mice on a high-calorie diet
    • J.A. Baur, K.J. Pearson, and N.L. Price Resveratrol improves health and survival of mice on a high-calorie diet Nature 444 2006 337 342
    • (2006) Nature , vol.444 , pp. 337-342
    • Baur, J.A.1    Pearson, K.J.2    Price, N.L.3
  • 42
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
    • M. Lagouge, C. Argmann, and Z. Gerhart-Hines Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha Cell 127 2006 1109 1122
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1    Argmann, C.2    Gerhart-Hines, Z.3
  • 43
    • 80455143206 scopus 로고    scopus 로고
    • Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans
    • S. Timmers, E. Konings, and L. Bilet Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans Cell Metabolism 14 2011 612 622
    • (2011) Cell Metabolism , vol.14 , pp. 612-622
    • Timmers, S.1    Konings, E.2    Bilet, L.3
  • 44
    • 36749087548 scopus 로고    scopus 로고
    • Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
    • J.C. Milne, P.D. Lambert, and S. Schenk Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes Nature 450 2007 712 716
    • (2007) Nature , vol.450 , pp. 712-716
    • Milne, J.C.1    Lambert, P.D.2    Schenk, S.3
  • 45
    • 54849425547 scopus 로고    scopus 로고
    • Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
    • J.N. Feige, M. Lagouge, and C. Canto Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation Cell Metabolism 8 2008 347 358
    • (2008) Cell Metabolism , vol.8 , pp. 347-358
    • Feige, J.N.1    Lagouge, M.2    Canto, C.3
  • 46
    • 77950246109 scopus 로고    scopus 로고
    • SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
    • M. Pacholec, J.E. Bleasdale, and B. Chrunyk SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1 Journal of Biological Chemistry 285 2010 8340 8351
    • (2010) Journal of Biological Chemistry , vol.285 , pp. 8340-8351
    • Pacholec, M.1    Bleasdale, J.E.2    Chrunyk, B.3
  • 47
    • 0033922250 scopus 로고    scopus 로고
    • Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals
    • J. Zheng, and V.D. Ramirez Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals British Journal of Pharmacology 130 2000 1115 1123
    • (2000) British Journal of Pharmacology , vol.130 , pp. 1115-1123
    • Zheng, J.1    Ramirez, V.D.2
  • 48
    • 79953206276 scopus 로고    scopus 로고
    • Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through a SIRT1-dependent mechanism
    • L. Vetterli, T. Brun, and L. Giovannoni Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through a SIRT1-dependent mechanism Journal of Biological Chemistry 286 2011 6049 6060
    • (2011) Journal of Biological Chemistry , vol.286 , pp. 6049-6060
    • Vetterli, L.1    Brun, T.2    Giovannoni, L.3
  • 49
    • 17144424946 scopus 로고    scopus 로고
    • SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes
    • T. Shi, F. Wang, and E. Stieren SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes Journal of Biological Chemistry 280 2005 13560 13567
    • (2005) Journal of Biological Chemistry , vol.280 , pp. 13560-13567
    • Shi, T.1    Wang, F.2    Stieren, E.3
  • 50
    • 82455212901 scopus 로고    scopus 로고
    • SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
    • M.D. Hirschey, T. Shimazu, and E. Jing SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome Molecular Cell 44 2011 177 190
    • (2011) Molecular Cell , vol.44 , pp. 177-190
    • Hirschey, M.D.1    Shimazu, T.2    Jing, E.3
  • 52
    • 84860228592 scopus 로고    scopus 로고
    • In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; And SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner
    • B.J. Gurd, G.P. Holloway, and Y. Yoshida In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner Metabolism 61 2012 733 741
    • (2012) Metabolism , vol.61 , pp. 733-741
    • Gurd, B.J.1    Holloway, G.P.2    Yoshida, Y.3
  • 53
    • 3142740860 scopus 로고    scopus 로고
    • Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
    • H.Y. Cohen, C. Miller, and K.J. Bitterman Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase Science 305 2004 390 392
    • (2004) Science , vol.305 , pp. 390-392
    • Cohen, H.Y.1    Miller, C.2    Bitterman, K.J.3
  • 54
    • 79955768567 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype
    • A. Giralt, E. Hondares, and J.A. Villena Peroxisome proliferator- activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype Journal of Biological Chemistry 286 2011 16958 16966
    • (2011) Journal of Biological Chemistry , vol.286 , pp. 16958-16966
    • Giralt, A.1    Hondares, E.2    Villena, J.A.3
  • 55
    • 77955347446 scopus 로고    scopus 로고
    • Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis
    • X. Kong, R. Wang, and Y. Xue Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis Public Library of Science One 5 2010 e11707
    • (2010) Public Library of Science One , vol.5 , pp. 11707
    • Kong, X.1    Wang, R.2    Xue, Y.3
  • 56
    • 84862318067 scopus 로고    scopus 로고
    • Modulatory effect of resveratrol on SIRT1, SIRT3, SIRT4, PGC1alpha and NAMPT gene expression profiles in wild-type adult zebrafish liver
    • H. Schirmer, T.C. Pereira, and E.P. Rico Modulatory effect of resveratrol on SIRT1, SIRT3, SIRT4, PGC1alpha and NAMPT gene expression profiles in wild-type adult zebrafish liver Molecular Biology Reports 39 2011 3281 3289
    • (2011) Molecular Biology Reports , vol.39 , pp. 3281-3289
    • Schirmer, H.1    Pereira, T.C.2    Rico, E.P.3
  • 58
    • 65649095105 scopus 로고    scopus 로고
    • Alcohol-induced protein hyperacetylation: Mechanisms and consequences
    • B.D. Shepard, and P.L. Tuma Alcohol-induced protein hyperacetylation: mechanisms and consequences World Journal of Gastroenterology 15 2009 1219 1230
    • (2009) World Journal of Gastroenterology , vol.15 , pp. 1219-1230
    • Shepard, B.D.1    Tuma, P.L.2
  • 59
    • 37549002891 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
    • D.B. Lombard, F.W. Alt, and H.L. Cheng Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation Molecular Cellular Biology 27 2007 8807 8814
    • (2007) Molecular Cellular Biology , vol.27 , pp. 8807-8814
    • Lombard, D.B.1    Alt, F.W.2    Cheng, H.L.3
  • 60
    • 50149103440 scopus 로고    scopus 로고
    • Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
    • C. Schlicker, M. Gertz, and P. Papatheodorou Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5 Journal of Molecular Biology 382 2008 790 801
    • (2008) Journal of Molecular Biology , vol.382 , pp. 790-801
    • Schlicker, C.1    Gertz, M.2    Papatheodorou, P.3
  • 61
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • T. Nakagawa, D.J. Lomb, and M.C. Haigis SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle Cell 137 2009 560 570
    • (2009) Cell , vol.137 , pp. 560-570
    • Nakagawa, T.1    Lomb, D.J.2    Haigis, M.C.3
  • 62
    • 80052291180 scopus 로고    scopus 로고
    • Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
    • E. Jing, B. Emanuelli, and M.D. Hirschey Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production Proceedings of the National Academy of Sciences of the United States of America 108 2011 14608 14613
    • (2011) Proceedings of the National Academy of Sciences of the United States of America , vol.108 , pp. 14608-14613
    • Jing, E.1    Emanuelli, B.2    Hirschey, M.D.3
  • 63
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • J.T. Rodgers, C. Lerin, and W. Haas Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1 Nature 434 2005 113 118
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3
  • 64
    • 77955499804 scopus 로고    scopus 로고
    • Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha
    • J.H. Lim, Y.M. Lee, and Y.S. Chun Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha Molecular Cell 38 2010 864 878
    • (2010) Molecular Cell , vol.38 , pp. 864-878
    • Lim, J.H.1    Lee, Y.M.2    Chun, Y.S.3
  • 65
    • 33646248422 scopus 로고    scopus 로고
    • Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells
    • C.J. Hu, S. Iyer, and A. Sataur Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells Molecular Cellular Biology 26 2006 3514 3526
    • (2006) Molecular Cellular Biology , vol.26 , pp. 3514-3526
    • Hu, C.J.1    Iyer, S.2    Sataur, A.3
  • 66
    • 33644614520 scopus 로고    scopus 로고
    • HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia
    • J.W. Kim, I. Tchernyshyov, and G.L. Semenza HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia Cell Metabolism 3 2006 177 185
    • (2006) Cell Metabolism , vol.3 , pp. 177-185
    • Kim, J.W.1    Tchernyshyov, I.2    Semenza, G.L.3
  • 67
    • 78649521247 scopus 로고    scopus 로고
    • Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
    • X. Qiu, K. Brown, and M.D. Hirschey Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation Cell Metabolism 12 2010 662 667
    • (2010) Cell Metabolism , vol.12 , pp. 662-667
    • Qiu, X.1    Brown, K.2    Hirschey, M.D.3
  • 68
    • 78651468722 scopus 로고    scopus 로고
    • Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
    • S. Someya, W. Yu, and W.C. Hallows Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction Cell 143 2010 802 812
    • (2010) Cell , vol.143 , pp. 802-812
    • Someya, S.1    Yu, W.2    Hallows, W.C.3
  • 69
    • 79952501323 scopus 로고    scopus 로고
    • SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
    • L.W. Finley, A. Carracedo, and J. Lee SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization Cancer Cell 19 2011 416 428
    • (2011) Cancer Cell , vol.19 , pp. 416-428
    • Finley, L.W.1    Carracedo, A.2    Lee, J.3
  • 70
    • 77951176793 scopus 로고    scopus 로고
    • Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria
    • N. Shulga, R. Wilson-Smith, and J.G. Pastorino Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria Journal of Cell Science 123 2010 894 902
    • (2010) Journal of Cell Science , vol.123 , pp. 894-902
    • Shulga, N.1    Wilson-Smith, R.2    Pastorino, J.G.3
  • 73
    • 80051716282 scopus 로고    scopus 로고
    • Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
    • L.W. Finley, W. Haas, and V. Desquiret-Dumas Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity Public Library of Sciences One 6 2011 e23295
    • (2011) Public Library of Sciences One , vol.6 , pp. 23295
    • Finley, L.W.1    Haas, W.2    Desquiret-Dumas, V.3
  • 74
    • 75349111140 scopus 로고    scopus 로고
    • Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
    • H. Cimen, M.J. Han, and Y. Yang Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria Biochemistry 49 2010 304 311
    • (2010) Biochemistry , vol.49 , pp. 304-311
    • Cimen, H.1    Han, M.J.2    Yang, Y.3
  • 75
    • 77951235122 scopus 로고    scopus 로고
    • NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10
    • Y. Yang, H. Cimen, and M.J. Han NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10 The Journal of Biological Chemistry 285 2010 7417 7429
    • (2010) The Journal of Biological Chemistry , vol.285 , pp. 7417-7429
    • Yang, Y.1    Cimen, H.2    Han, M.J.3
  • 76
    • 66249144685 scopus 로고    scopus 로고
    • Identification and characterization of proteins interacting with SIRT1 and SIRT3: Implications in the anti-aging and metabolic effects of sirtuins
    • I.K. Law, L. Liu, and A. Xu Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins Proteomics 9 2009 2444 2456
    • (2009) Proteomics , vol.9 , pp. 2444-2456
    • Law, I.K.1    Liu, L.2    Xu, A.3
  • 77
    • 67949102053 scopus 로고    scopus 로고
    • Recent progress in the biology and physiology of sirtuins
    • T. Finkel, C.X. Deng, and R. Mostoslavsky Recent progress in the biology and physiology of sirtuins Nature 460 2009 587 591
    • (2009) Nature , vol.460 , pp. 587-591
    • Finkel, T.1    Deng, C.X.2    Mostoslavsky, R.3
  • 78
    • 36349030394 scopus 로고    scopus 로고
    • Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase
    • N. Ahuja, B. Schwer, and S. Carobbio Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase Journal of Biological Chemistry 282 2007 33583 33592
    • (2007) Journal of Biological Chemistry , vol.282 , pp. 33583-33592
    • Ahuja, N.1    Schwer, B.2    Carobbio, S.3
  • 79
    • 0036154857 scopus 로고    scopus 로고
    • Control of mitochondrial beta-oxidation flux
    • S. Eaton Control of mitochondrial beta-oxidation flux Progress in Lipid Research 41 2002 197 239
    • (2002) Progress in Lipid Research , vol.41 , pp. 197-239
    • Eaton, S.1
  • 80
    • 81055125669 scopus 로고    scopus 로고
    • NCoR1 is a conserved physiological modulator of muscle mass and oxidative function
    • H. Yamamoto, E.G. Williams, and L. Mouchiroud NCoR1 is a conserved physiological modulator of muscle mass and oxidative function Cell 147 2011 827 839
    • (2011) Cell , vol.147 , pp. 827-839
    • Yamamoto, H.1    Williams, E.G.2    Mouchiroud, L.3
  • 81
    • 33845596500 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism
    • C. Handschin, and B.M. Spiegelman Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism Endocrine Reviews 27 2006 728 735
    • (2006) Endocrine Reviews , vol.27 , pp. 728-735
    • Handschin, C.1    Spiegelman, B.M.2
  • 82
    • 55949084664 scopus 로고    scopus 로고
    • The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha}
    • A. Coste, J.F. Louet, and M. Lagouge The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha} Proceedings of the National Academy Sciences of the United States of America 105 2008 17187 17192
    • (2008) Proceedings of the National Academy Sciences of the United States of America , vol.105 , pp. 17187-17192
    • Coste, A.1    Louet, J.F.2    Lagouge, M.3
  • 83
    • 77957349477 scopus 로고    scopus 로고
    • AMP-activated protein kinase and its downstream transcriptional pathways
    • C. Canto, and J. Auwerx AMP-activated protein kinase and its downstream transcriptional pathways Cellular and Molecular Life Sciences 67 2010 3407 3423
    • (2010) Cellular and Molecular Life Sciences , vol.67 , pp. 3407-3423
    • Canto, C.1    Auwerx, J.2
  • 86
    • 80555142897 scopus 로고    scopus 로고
    • Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction
    • S. Schenk, C.E. McCurdy, and A. Philp Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction The Journal of Clinical Investigation 121 2011 4281 4288
    • (2011) The Journal of Clinical Investigation , vol.121 , pp. 4281-4288
    • Schenk, S.1    McCurdy, C.E.2    Philp, A.3
  • 87
    • 77952940043 scopus 로고    scopus 로고
    • Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
    • O.M. Palacios, J.J. Carmona, and S. Michan Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle Aging (Albany NY) 1 2009 771 783
    • (2009) Aging (Albany NY) , vol.1 , pp. 771-783
    • Palacios, O.M.1    Carmona, J.J.2    Michan, S.3
  • 88
    • 80052193535 scopus 로고    scopus 로고
    • Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) deacetylation following endurance exercise
    • A. Philp, A. Chen, and D. Lan Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) deacetylation following endurance exercise Journal of Biological Chemistry 286 2011 30561 30570
    • (2011) Journal of Biological Chemistry , vol.286 , pp. 30561-30570
    • Philp, A.1    Chen, A.2    Lan, D.3
  • 89
    • 77957762687 scopus 로고    scopus 로고
    • SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
    • N. Nasrin, X. Wu, and E. Fortier SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells Journal of Biological Chemistry 285 2010 31995 32002
    • (2010) Journal of Biological Chemistry , vol.285 , pp. 31995-32002
    • Nasrin, N.1    Wu, X.2    Fortier, E.3
  • 90
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • M.D. Hirschey, T. Shimazu, and E. Goetzman SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation Nature 464 2010 121 125
    • (2010) Nature , vol.464 , pp. 121-125
    • Hirschey, M.D.1    Shimazu, T.2    Goetzman, E.3
  • 91
    • 77955615635 scopus 로고    scopus 로고
    • Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles
    • F. Hokari, E. Kawasaki, and A. Sakai Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles Journal of Applied Physiology 109 2010 332 340
    • (2010) Journal of Applied Physiology , vol.109 , pp. 332-340
    • Hokari, F.1    Kawasaki, E.2    Sakai, A.3
  • 92
    • 63449112017 scopus 로고    scopus 로고
    • Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
    • A. Purushotham, T.T. Schug, and Q. Xu Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation Cell Metabolism 9 2009 327 338
    • (2009) Cell Metabolism , vol.9 , pp. 327-338
    • Purushotham, A.1    Schug, T.T.2    Xu, Q.3
  • 93
    • 78650533816 scopus 로고    scopus 로고
    • Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition
    • R.H. Wang, C. Li, and C.X. Deng Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition International Journal of Biological Sciences 6 2010 682 690
    • (2010) International Journal of Biological Sciences , vol.6 , pp. 682-690
    • Wang, R.H.1    Li, C.2    Deng, C.X.3
  • 94
    • 77954515012 scopus 로고    scopus 로고
    • Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: A role of lipid mobilization and inflammation
    • F. Xu, Z. Gao, and J. Zhang Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: a role of lipid mobilization and inflammation Endocrinology 151 2010 2504 2514
    • (2010) Endocrinology , vol.151 , pp. 2504-2514
    • Xu, F.1    Gao, Z.2    Zhang, J.3
  • 96
    • 70350452395 scopus 로고    scopus 로고
    • Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice
    • Y. Yamazaki, I. Usui, and Y. Kanatani Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice American Journal of Physiology, Endocrinology and Metabolism 2009
    • (2009) American Journal of Physiology, Endocrinology and Metabolism
    • Yamazaki, Y.1    Usui, I.2    Kanatani, Y.3
  • 97
    • 77954488637 scopus 로고    scopus 로고
    • Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
    • A.K. Walker, F. Yang, and K. Jiang Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP Genes and Development 24 2010 1403 1417
    • (2010) Genes and Development , vol.24 , pp. 1403-1417
    • Walker, A.K.1    Yang, F.2    Jiang, K.3
  • 98
    • 77958595135 scopus 로고    scopus 로고
    • SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
    • B. Ponugoti, D.H. Kim, and Z. Xiao SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism Journal of Biological Chemistry 285 2010 33959 33970
    • (2010) Journal of Biological Chemistry , vol.285 , pp. 33959-33970
    • Ponugoti, B.1    Kim, D.H.2    Xiao, Z.3
  • 99
    • 0035823629 scopus 로고    scopus 로고
    • Transcriptional regulation of the murine acetyl-CoA synthetase 1 gene through multiple clustered binding sites for sterol regulatory element-binding proteins and a single neighboring site for Sp1
    • Y. Ikeda, J. Yamamoto, and M. Okamura Transcriptional regulation of the murine acetyl-CoA synthetase 1 gene through multiple clustered binding sites for sterol regulatory element-binding proteins and a single neighboring site for Sp1 Journal of Biological Chemistry 276 2001 34259 34269
    • (2001) Journal of Biological Chemistry , vol.276 , pp. 34259-34269
    • Ikeda, Y.1    Yamamoto, J.2    Okamura, M.3
  • 100
    • 0035815751 scopus 로고    scopus 로고
    • Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate
    • T. Fujino, J. Kondo, and M. Ishikawa Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate Journal of Biological Chemistry 276 2001 11420 11426
    • (2001) Journal of Biological Chemistry , vol.276 , pp. 11420-11426
    • Fujino, T.1    Kondo, J.2    Ishikawa, M.3
  • 102
    • 78649509214 scopus 로고    scopus 로고
    • SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
    • T. Shimazu, M.D. Hirschey, and L. Hua SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production Cell Metabolism 12 2010 654 661
    • (2010) Cell Metabolism , vol.12 , pp. 654-661
    • Shimazu, T.1    Hirschey, M.D.2    Hua, L.3
  • 104
    • 0026298781 scopus 로고
    • The urea cycle: A two-compartment system
    • M. Watford The urea cycle: a two-compartment system Essays in Biochemistry 26 1991 49 58
    • (1991) Essays in Biochemistry , vol.26 , pp. 49-58
    • Watford, M.1
  • 105
    • 78651468707 scopus 로고    scopus 로고
    • Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
    • W.C. Hallows, W. Yu, and B.C. Smith Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction Molecular Cell 41 2011 139 149
    • (2011) Molecular Cell , vol.41 , pp. 139-149
    • Hallows, W.C.1    Yu, W.2    Smith, B.C.3
  • 106
    • 84861589885 scopus 로고    scopus 로고
    • Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis
    • P.J. Fernandez-Marcos, E.H. Jeninga, and C. Canto Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis Scientific Reports 2 2012 425
    • (2012) Scientific Reports , vol.2 , pp. 425
    • Fernandez-Marcos, P.J.1    Jeninga, E.H.2    Canto, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.