-
1
-
-
34548536094
-
The high-dimension, low-sample-size geometric representation holds under mild conditions
-
DOI 10.1093/biomet/asm050
-
AHN, J., MARRON, J. S., MULLER, K. M. & CHI, Y.-Y. (2007). The high-dimension, low-sample-size geometric representation holds under mild conditions. Biometrika 94, 760-6. (Pubitemid 47384265)
-
(2007)
Biometrika
, vol.94
, Issue.3
, pp. 760-766
-
-
Ahn, J.1
Marron, J.S.2
Muller, K.M.3
Chi, Y.-Y.4
-
2
-
-
0000874557
-
Theoretical foundations of the potential functionmethod in pattern recognition learning
-
AIZERMAN, A.,BRAVERMAN, E. M. & ROZONER, L. I. (1964). Theoretical foundations of the potential functionmethod in pattern recognition learning. Auto. Remote Contr. 25, 821-37.
-
(1964)
Auto. Remote Contr
, vol.25
, pp. 821-837
-
-
Aizerman, A.1
Braverman, E.M.2
Rozoner, L.I.3
-
3
-
-
2342458706
-
Second-order cone programming
-
DOI 10.1007/s10107-002-0339-5
-
ALIZADEH, F., ALIZADEH, F., GOLDFARB, D. & GOLDFARB, D. (2001). Second-order cone programming. Math. Prog. 95, 3-51. (Pubitemid 44757862)
-
(2003)
Mathematical Programming, Series B
, vol.95
, Issue.1
, pp. 3-51
-
-
Alizadeh, F.1
Goldfarb, D.2
-
4
-
-
0026966646
-
Training algorithm for optimal margin classifiers
-
BOSER, B. E., GUYON, I. M. & VAPNIK, V. (1992). A training algorithm for optimal margin classifiers. In Proc. 5th Ann. ACM Workshop Comp. Learn. Theory, Ed. D. Haussler, pp. 144-52. New York: ACM Press. BREIMAN, L. (2001). Random forests. Mach. Learn. 45, 5-32. (Pubitemid 23615470)
-
(1992)
Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser Bernhard, E.1
Guyon Isabelle, M.2
Vapnik Vladimir, N.3
-
5
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
BURGES, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining Know. Disc. 2, 121-67. (Pubitemid 128695475)
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
6
-
-
34249753618
-
Support vector networks
-
CORTES, C. & VAPNIK, V. (1995). Support vector networks. Mach. Learn. 20, 273-97.
-
(1995)
Mach. Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
8
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
FISHER, R. A. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179-88.
-
(1936)
Ann. Eugen
, Issue.7
, pp. 179-188
-
-
Fisher, R.A.1
-
9
-
-
20744451888
-
Geometric representation of high dimension, low sample size data
-
DOI 10.1111/j.1467-9868.2005.00510.x
-
HALL, P.,MARRON, J. S. & NEEMAN, A. (2005). Geometric representation of high dimension, low sample size data. J. R. Statist. Soc. B 67, 427-44. (Pubitemid 40855293)
-
(2005)
Journal of the Royal Statistical Society. Series B: Statistical Methodology
, vol.67
, Issue.3
, pp. 427-444
-
-
Hall, P.1
Marron, J.S.2
Neeman, A.3
-
11
-
-
70249103304
-
PCA consistency in high dimension, low sample size context
-
JUNG, S. & MARRON, J. S. (2009). PCA consistency in high dimension, low sample size context. Ann. Statist. 37, 4104-30.
-
(2009)
Ann. Statist
, vol.37
, pp. 4104-4130
-
-
Jung, S.1
Marron, J.S.2
-
12
-
-
54949118365
-
Statistical significance of clustering for high-dimension, low-sample size data
-
LIU, Y., HAYES, D. N., NOBEL, A. & MARRON, J. S. (2008). Statistical significance of clustering for high-dimension, low-sample size data. J. Am. Statist. Assoc. 103, 1281-93.
-
(2008)
J. Am. Statist. Assoc
, vol.103
, pp. 1281-1293
-
-
Liu, Y.1
Hayes, D.N.2
Nobel, A.3
Marron, J.S.4
-
13
-
-
38349049321
-
Distance-weighted discrimination
-
MARRON, J. S., TODD, M. & AHN, J. (2007). Distance-weighted discrimination. J. Am. Statist. Assoc. 102, 1267-71.
-
(2007)
J. Am. Statist. Assoc
, vol.102
, pp. 1267-1271
-
-
Marron, J.S.1
Todd, M.2
Ahn, J.3
-
14
-
-
77952561415
-
Asymptotic properties of distance-weighted discrimination
-
QIAO, X., ZHANG, H. H., LIU, Y., TODD, M. J. & MARRON, J. S. (2010). Asymptotic properties of distance-weighted discrimination. J. Am. Statist. Assoc. 105, 401-14.
-
(2010)
J. Am. Statist. Assoc
, Issue.105
, pp. 401-414
-
-
Qiao, X.1
Zhang, H.H.2
Liu, Y.3
Todd, M.J.4
Marron, J.S.5
-
16
-
-
0003450542
-
-
New York: Springer
-
R DEVELOPMENT CORE TEAM (2012). R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0, http://www.R-project.org. VAPNIK, V. N. (1995). The Nature of Statistical Learning Theory. New York: Springer
-
(1995)
Nature of Statistical Learning Theory
-
-
Vapnik, V.N.1
-
17
-
-
73649123907
-
Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
-
CANCER GENOME ATLAS RESEARCH NETWORK
-
VERHAAK, R. G., HOADLEY, K. A., PURDOM, E., WANG, V., QI, Y., WILKERSON, M. D., MILLER, C. R., DING, L., GOLUB, T.,MESIROV, J. P., ET AL. & CANCER GENOME ATLAS RESEARCH NETWORK (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98-110.
-
(2010)
Cancer Cell
, vol.17
, pp. 98-110
-
-
Verhaak, R.G.1
Hoadley, K.A.2
Purdom, E.3
Wang, V.4
Qi, Y.5
Wilkerson, M.D.6
Miller, C.R.7
Ding, L.8
Golub, T.9
Mesirov, J.P.10
Et, A.L.11
|