메뉴 건너뛰기




Volumn 13, Issue , 2012, Pages 2773-2812

Multi-task regression using minimal penalties

Author keywords

Learning theory; Multi task; Oracle inequality

Indexed keywords

KEY ELEMENTS; LEARNING THEORY; MULTI-TASK; NON-ASYMPTOTIC; OPTIMAL CALIBRATION; ORACLE INEQUALITY; RIDGE REGRESSION; TARGET FUNCTIONS;

EID: 84869176818     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (22)

References (26)
  • 2
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • December ISSN 1532-4435
    • Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:1817-1853, December 2005. ISSN 1532-4435.
    • (2005) Journal Of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 3
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • Andreas Argyriou, Theodoros Evgeniou, andMassimiliano Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 4
    • 77952562051 scopus 로고    scopus 로고
    • Model selection by resampling penalization
    • (electronic), ISSN 1935-7524. doi: 10.1214/08-EJS196
    • Sylvain Arlot. Model selection by resampling penalization. Electron. J. Stat., 3:557-624 (electronic), 2009. ISSN 1935-7524. doi: 10.1214/08-EJS196.
    • (2009) Electron. J. Stat. , vol.3 , pp. 557-624
    • Arlot, S.1
  • 6
    • 61749091779 scopus 로고    scopus 로고
    • Data-driven calibration of penalties for least-squares regression
    • (electronic
    • Sylvain Arlot and Pascal Massart. Data-driven calibration of penalties for least-squares regression. Journal of Machine Learning Research, 10:245-279 (electronic), 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 245-279
    • Arlot, S.1    Massart, P.2
  • 8
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for bayesian multitask learning
    • December ISSN 1532-4435 doi http://dx.doi. org/10.1162/153244304322765658
    • Bart Bakker and Tom Heskes. Task clustering and gating for bayesian multitask learning. Journal of Machine Learning Research, 4:83-99, December 2003. ISSN 1532-4435. doi: http://dx.doi. org/10.1162/153244304322765658.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 10
    • 0002799895 scopus 로고
    • Adaptive multivariate ridge regression
    • ISSN 00905364
    • Philip J. Brown and James V. Zidek. Adaptive multivariate ridge regression. The Annals of Statistics, 8(1):pp. 64-74, 1980. ISSN 00905364.
    • (1980) The Annals of Statistics , vol.8 , Issue.1 , pp. 64-74
    • Brown, P.J.1    Zidek, J.V.2
  • 11
    • 0031189914 scopus 로고    scopus 로고
    • Multitask Learning
    • Rich Caruana. Multitask learning. Machine Learning, 28:41-75, July 1997. ISSN 0885-6125. doi: 10.1023/A:1007379606734. (Pubitemid 127507169)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 13
    • 70450245260 scopus 로고    scopus 로고
    • Recovering sparse signals with nonconvex penalties and dc programming
    • Gilles Gasso, Alain Rakotomamonjy, and St́ephane Canu. Recovering sparse signals with nonconvex penalties and dc programming. IEEE Trans. Signal Processing, 57(12):4686-4698, 2009.
    • (2009) IEEE Trans. Signal Processing , vol.57 , Issue.12 , pp. 4686-4698
    • Gasso, G.1    Rakotomamonjy, A.2    Canu, S.3
  • 15
    • 84869161867 scopus 로고    scopus 로고
    • Clustered multi-task learning: A convex formulation
    • Laurent Jacob, Francis Bach, and Jean-Philippe Vert. Clustered multi-task learning: A convex formulation. Computing Research Repository, pages-1-1, 2008.
    • (2008) Computing Research Repository , pp. 1-1
    • Jacob, L.1    Bach, F.2    Vert, J.-P.3
  • 16
    • 80052857394 scopus 로고    scopus 로고
    • Optimal model selection in density estimation
    • ISSN 0246-0203. Accepted. arXiv: 0910.1654
    • Matthieu Lerasle. Optimal model selection in density estimation. Ann. Inst. H. Poincar'e Probab. Statist., 2011. ISSN 0246-0203. Accepted. arXiv:0910.1654.
    • (2011) Ann. Inst. H. Poincar'e Probab. Statist.
    • Lerasle, M.1
  • 19
    • 84855412474 scopus 로고    scopus 로고
    • Oracle inequalities and optimal inference under group sparsity
    • Karim Lounici, Massimiliano Pontil, Sarah van de Geer, and Alexandre Tsybakov. Oracle inequalities and optimal inference under group sparsity. The Annals of Statistics, 39(4):2164-2204, 2011.
    • (2011) The Annals of Statistics , vol.39 , Issue.4 , pp. 2164-2204
    • Lounici, K.1    Pontil, M.2    Van De Geer, S.3    Tsybakov, A.4
  • 20
    • 84915425007 scopus 로고
    • Some comments on cp
    • Colin L. Mallows. Some comments on CP. Technometrics, pages 661-675, 1973.
    • (1973) Technometrics , pp. 661-675
    • Mallows, C.L.1
  • 21
    • 79551607002 scopus 로고    scopus 로고
    • Support union recovery in high-dimensional multivariate regression
    • Guillaume Obozinski, Martin J. Wainwright, and Michael I. Jordan. Support union recovery in high-dimensional multivariate regression. The Annals of Statistics, 39(1):1-17, 2011.
    • (2011) The Annals of Statistics , vol.391 , pp. 1-17
    • Obozinski, G.1    Wainwright, M.J.2    Jordan, M.I.3
  • 23
    • 33845258041 scopus 로고    scopus 로고
    • Learning with kernels: Support vector machines, regularization, optimization, and beyond
    • MIT Press, Cambridge, MA, USA
    • Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, USA, 12 2002.
    • (2002) Adaptive Computation and Machine Learning , vol.12
    • Schölkopf, B.1    Smola, A.J.2
  • 25
    • 0003241881 scopus 로고
    • Spline models for observational data, volume 59 of cbms-nsf regional conference series in applied mathematics
    • Philadelphia, PA, ISBN 0-89871-244-0
    • Grace Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. ISBN 0-89871-244-0.
    • (1990) Society for Industrial and Applied Mathematics (SIAM
    • Wahba, G.1
  • 26
    • 22944490838 scopus 로고    scopus 로고
    • Learning bounds for kernel regression using effective data dimensionality
    • DOI 10.1162/0899766054323008
    • Tong Zhang. Learning bounds for kernel regression using effective data dimensionality. Neural Computation, 17(9):2077-2098, 2005. (Pubitemid 41053634)
    • (2005) Neural Computation , vol.17 , Issue.9 , pp. 2077-2098
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.