메뉴 건너뛰기




Volumn 15, Issue 4, 2012, Pages 684-699

Research paper : Solution of fractional partial differential equations using iterative method

Author keywords

Caputo fractional derivative; Fractional diffusion wave equations; Fractional transport equations; Iterative method; Riemann Liouville fractional integral

Indexed keywords


EID: 84869160121     PISSN: 13110454     EISSN: 13142444     Source Type: Journal    
DOI: 10.2478/s13540-012-0046-8     Document Type: Article
Times cited : (37)

References (35)
  • 2
    • 85033872636 scopus 로고    scopus 로고
    • Solution of nonlinear partial differential equations
    • G. Adomain, Solution of nonlinear partial differential equations. Appl. Math. Lett. 11, No 3 (1998), 121-123.
    • (1998) Appl. Math. Lett , vol.11 , Issue.3 , pp. 121-123
    • Adomain, G.1
  • 3
    • 0001859932 scopus 로고    scopus 로고
    • A general solution for a fourth order fractional diffusionwave equation
    • abstract at
    • O.P. Agrawal, A general solution for a fourth order fractional diffusionwave equation. Fract. Calc. Appl. Anal. 3, No 1 (2000), 1-12; abstract at http://www.math.bas.bg/fcaa.
    • (2000) Fract. Calc. Appl. Anal , vol.3 , Issue.1 , pp. 1-12
    • Agrawal, O.P.1
  • 4
    • 0035359131 scopus 로고    scopus 로고
    • A general solution for a fourth order fractional diffusionwave equation defined in a bounded domain
    • O.P. Agrawal, A general solution for a fourth order fractional diffusionwave equation defined in a bounded domain. Comput. Struct., 79 (2001), 1497-1501.
    • (2001) Comput. Struct , vol.79 , pp. 1497-1501
    • Agrawal, O.P.1
  • 5
    • 0036650559 scopus 로고    scopus 로고
    • Solution for a fractional diffusion-wave equation defined in a bounded domain
    • O.P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynamics 29 (2002), 145-155.
    • (2002) Nonlinear Dynamics , vol.29 , pp. 145-155
    • Agrawal, O.P.1
  • 6
    • 51549115850 scopus 로고    scopus 로고
    • New iterative method:applications to partial differential equations
    • S. Bhalekar, V. Daftardar-Gejji, New iterative method:applications to partial differential equations. Appl. Math. Comp. 203 (2008), 778-783.
    • (2008) Appl. Math. Comp , vol.203 , pp. 778-783
    • Bhalekar, S.1    Daftardar-Gejji, V.2
  • 7
    • 34848888634 scopus 로고    scopus 로고
    • He's variational iteration method for fourthorder parabolic equation
    • J. Biazar, H. Ghazvini, He's variational iteration method for fourthorder parabolic equation. Comp. Math. Appl. 54 (2007), 1047-1054.
    • (2007) Comp. Math. Appl , vol.54 , pp. 1047-1054
    • Biazar, J.1    Ghazvini, H.2
  • 8
    • 29844442304 scopus 로고    scopus 로고
    • An iterative method for solving nonlinear functional equations
    • V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 316 (2006), 753-763.
    • (2006) J. Math. Anal. Appl , vol.316 , pp. 753-763
    • Daftardar-Gejji, V.1    Jafari, H.2
  • 9
    • 51549091643 scopus 로고    scopus 로고
    • Solving fractional diffusion-wave equation using a new iterative method
    • V. Daftardar-Gejji, S. Bhalekar, Solving fractional diffusion-wave equation using a new iterative method. Fract. Calc. Appl. Anal. 11, No 2 (2008), 193-202; at http://www.math.bas.bg/fcaa.
    • (2008) Fract. Calc. Appl. Anal , vol.11 , Issue.2 , pp. 193-202
    • Daftardar-Gejji, V.1    Bhalekar, S.2
  • 10
    • 17844372193 scopus 로고    scopus 로고
    • Recent applications of fractional calculus to science and engineering
    • L. Debnath, Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 00 (2003), 1-30.
    • (2003) Int. J. Math. Math. Sci , vol.0 , pp. 1-30
    • Debnath, L.1
  • 11
    • 85162564099 scopus 로고    scopus 로고
    • Numerical solution of system of fractional partial differential equations by discrete adomain decomposition method
    • D.B. Dhaigude, G.A. Birajdar, Numerical solution of system of fractional partial differential equations by discrete Adomain decomposition method. J. Fract. Calc. Appl. 3, No 12 (2012), 1-11.
    • (2012) J. Fract. Calc. Appl , vol.3 , Issue.12 , pp. 1-11
    • Dhaigude, D.B.1    Birajdar, G.A.2
  • 12
    • 84869165825 scopus 로고    scopus 로고
    • Linear initial value problems for fractional partial differential equations
    • D.B. Dhaigude, C.D. Dhaigude, Linear initial value problems for fractional partial differential equations. Bull. Marathwada Math. Soc. 13, No 2 (2012), 17-38.
    • (2012) Bull. Marathwada Math. Soc , vol.13 , Issue.2 , pp. 17-38
    • Dhaigude, D.B.1    Dhaigude, C.D.2
  • 13
    • 84869159547 scopus 로고    scopus 로고
    • Adomain decomposition method for fractional benjamin-bona-mahony-burger's equation
    • D.B. Dhaigude, G.A. Birajdar, V.R. Nikam, Adomain decomposition method for fractional Benjamin-Bona-Mahony-Burger's equation. Int. J. Appl. Math. Mech. 8, No 12 (2012), 42-51.
    • (2012) Int. J. Appl. Math. Mech , vol.8 , Issue.12 , pp. 42-51
    • Dhaigude, D.B.1    Birajdar, G.A.2    Nikam, V.R.3
  • 14
    • 80051692866 scopus 로고    scopus 로고
    • A finite element method for time fractional partial differential equations
    • DOI: 102478/s13540-454-474 DOI: 102478/s13011
    • N.J. Ford, J. Xiao, Y. Yan, A finite element method for time fractional partial differential equations. Fract. Calc. Appl. Anal. 14, No 3 (2011), 454-474; DOI: 10.2478/s13540-011-0028-2; at http://www.springerlink.com/content/ 1311-0454/14/3/
    • (2011) Fract. Calc. Appl. Anal , vol.14 , Issue.3 , pp. 454-474
    • Ford, N.J.1    Xiao, J.2    Yan, Y.3
  • 15
    • 0001780043 scopus 로고
    • Fractional diffusion equation relaxation in complex viscoelastic materials
    • M. Giona, S. Cerbelli, H.E. Roman, Fractional diffusion equation relaxation in complex viscoelastic materials. Physica A 191 (1992), 449-453.
    • (1992) Physica A , vol.191 , pp. 449-453
    • Giona, M.1    Cerbelli, S.2    Roman, H.E.3
  • 16
    • 77953135506 scopus 로고    scopus 로고
    • Numerical modelling of linear and nonlinear diffusion equations by compact finite difference method
    • G. Gurarslan, Numerical modelling of linear and nonlinear diffusion equations by compact finite difference method. Appl. Math. Comp. 216 (2010), 2472-2478.
    • (2010) Appl. Math. Comp , vol.216 , pp. 2472-2478
    • Gurarslan, G.1
  • 17
    • 0032307661 scopus 로고    scopus 로고
    • Approximate analytical solution for seepage flow with fractional derivatives in porous media
    • J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Meth. Appl. Mech. Eng. 167 (1998), 57-68.
    • (1998) Comput. Meth. Appl. Mech. Eng , vol.167 , pp. 57-68
    • He, J.H.1
  • 18
    • 0032672778 scopus 로고    scopus 로고
    • Homotopy perturbation technique
    • J.H. He, Homotopy perturbation technique. Comput. Meth. Appl. Mech. Eng. 178 (1999), 257-262.
    • (1999) Comput. Meth. Appl. Mech. Eng , vol.178 , pp. 257-262
    • He, J.H.1
  • 19
    • 0037440579 scopus 로고    scopus 로고
    • Homotopy perturbation method: A new nonlinear analytic technique
    • J.H. He, Homotopy perturbation method: a new nonlinear analytic technique, Appl. Math. Comp. 135 (2003), 73-79.
    • (2003) Appl. Math. Comp , vol.135 , pp. 73-79
    • He, J.H.1
  • 20
    • 18844426016 scopus 로고    scopus 로고
    • Application to homotopy perturbation method too nonlinear wave equations
    • J.H. He, Application to homotopy perturbation method too nonlinear wave equations. Choas, Solitons and Fractals 26, No 3 (2005), 695-700.
    • (2005) Choas, Solitons and Fractals , vol.26 , Issue.3 , pp. 695-700
    • He, J.H.1
  • 21
    • 34748870677 scopus 로고    scopus 로고
    • Variational iteration method: New development and applications
    • J.H. He, X.H.Wu, Variational iteration method: new development and applications. Comp. Math. Appl. 54 (2007), 881-894.
    • (2007) Comp. Math. Appl , vol.54 , pp. 881-894
    • He, J.H.1    Wu, X.H.2
  • 22
    • 47049131727 scopus 로고    scopus 로고
    • Solving a fourth-order fractional diffusion-wave equation in a bounded domain by decomposition method
    • H. Jafari, M. Dehghan, Kh. Sayevand, Solving a fourth-order fractional diffusion-wave equation in a bounded domain by decomposition method. Numer. Methods Partial Differential Eq. 24 (2008), 1115-1126.
    • (2008) Numer. Methods Partial Differential Eq , vol.24 , pp. 1115-1126
    • Jafari, H.1    Dehghan, M.2    Sayevand, K.3
  • 24
    • 0030464353 scopus 로고    scopus 로고
    • Fractional relaxation-oscillation and fractional diffusion wave phenomena
    • F. Mainardi, Fractional relaxation-oscillation and fractional diffusion wave phenomena. Chaos, Solitons and Fractals 7, No 9 (1996), 1461-1477.
    • (1996) Chaos, Solitons and Fractals , vol.7 , Issue.9 , pp. 1461-1477
    • Mainardi, F.1
  • 25
    • 0001407424 scopus 로고    scopus 로고
    • The fundamental solution of the space-Time fractional diffusion equation
    • abstract at
    • F. Mainardi, Yu. Luchko, G. Pagnini, The fundamental solution of the space-Time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153-192; abstract at http://www.math.bas.bg/fcaa.
    • (2001) Fract. Calc. Appl. Anal , vol.4 , Issue.2 , pp. 153-192
    • Mainardi, F.1    Luchko, Y.2    Pagnini, G.3
  • 27
    • 0033884660 scopus 로고    scopus 로고
    • Boundary value problems for fractional diffusion equations
    • R. Metzler, J. Klafter, Boundary value problems for fractional diffusion equations. Physica A 278 (2000), 107-125.
    • (2000) Physica A , vol.278 , pp. 107-125
    • Metzler, R.1    Klafter, J.2
  • 28
    • 0022492943 scopus 로고
    • Realization of the generalized transfer equation in a medium with fractional geometry
    • R. Nigmatullin, Realization of the generalized transfer equation in a medium with fractional geometry. Physica Status (B), Basic Res. 133, No 1 (1986), 425-430.
    • (1986) Physica Status (B), Basic Res , vol.133 , Issue.1 , pp. 425-430
    • Nigmatullin, R.1
  • 30
    • 35348869861 scopus 로고    scopus 로고
    • Modified homotopy perturbation method: Application to quadratic riccati differential equation of fractional order
    • doi:10.1016/j.chaos.2006.06.041
    • Z. Odibat, S. Momani, Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Choas, Solitons and Fractals (2006); doi:10.1016/j.chaos.2006.06.041.
    • (2006) Choas, Solitons and Fractals
    • Odibat, Z.1    Momani, S.2
  • 32
    • 38049021511 scopus 로고    scopus 로고
    • On the solution of the fractional nonlinear schrodinger equation
    • S.Z. Rida, H.M. El-Sherbiny, A.A.M. Arafa, On the solution of the fractional nonlinear Schrodinger equation, Phys. Lett. A 372 (2008), 553-558.
    • (2008) Phys. Lett. A , vol.372 , pp. 553-558
    • Rida, S.Z.1    El-Sherbiny, H.M.2    Arafa, A.A.M.3
  • 33
    • 21344498117 scopus 로고
    • Continuous time random walks and the fractional diffusion equation
    • H.E. Roman, P.A. Alemany, Continuous time random walks and the fractional diffusion equation. J. Phys. A: Math. Gen. 27 (1994), 3407-3410.
    • (1994) J. Phys. A: Math. Gen , vol.27 , pp. 3407-3410
    • Roman, H.E.1    Alemany, P.A.2
  • 34
    • 0001553919 scopus 로고
    • Fractional diffusion and wave equations
    • W.R. Scneider, W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30, No 1 (1989), 134-144.
    • (1989) J. Math. Phys , vol.30 , Issue.1 , pp. 134-144
    • Scneider, W.R.1    Wyss, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.