-
1
-
-
17744373347
-
Thermal diode: Rectification of heat flux
-
Li, B., Wang, L. & Casati, G. Thermal diode: Rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004).
-
(2004)
Phys. Rev. Lett
, vol.93
, pp. 184301
-
-
Li, B.1
Wang, L.2
Casati, G.3
-
2
-
-
33751216776
-
Solid-state thermal rectifier
-
DOI 10.1126/science.1132898
-
Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121-1124 (2006). (Pubitemid 44789037)
-
(2006)
Science
, vol.314
, Issue.5802
, pp. 1121-1124
-
-
Chang, C.W.1
Okawa, D.2
Majumdar, A.3
Zettl, A.4
-
3
-
-
78649391306
-
An acoustic rectifier
-
Liang, B., Guo, X. S., Tu, J., Zhang, D. & Cheng, J. C. An acoustic rectifier. Nat. Mater. 9, 989-992 (2010).
-
(2010)
Nat. Mater
, vol.9
, pp. 989-992
-
-
Liang, B.1
Guo, X.S.2
Tu, J.3
Zhang, D.4
Cheng, J.C.5
-
4
-
-
69549135021
-
Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems
-
Liang, B., Yuan, B.&Cheng, J. Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems. Phys. Rev. Lett. 103, 104301 (2009).
-
(2009)
Phys. Rev. Lett
, vol.103
, pp. 104301
-
-
Liang, B.1
Yuan, B.2
Cheng, J.3
-
5
-
-
33750144610
-
Asymmetric propagation of electromagnetic waves through a planar chiral structure
-
Fedotov, V. A. et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys. Rev. Lett. 97, 167401 (2006).
-
(2006)
Phys. Rev. Lett
, vol.97
, pp. 167401
-
-
Fedotov, V.A.1
-
6
-
-
34547562387
-
Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures
-
DOI 10.1021/nl0707961
-
Fedotov, V. A., Schwanecke, A. S., Zheludev, N. I., Khardikov, V. V. & Prosvirnin, S. L. Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures. Nano Lett. 7, 1996-1999 (2007). (Pubitemid 47197580)
-
(2007)
Nano Letters
, vol.7
, Issue.7
, pp. 1996-1999
-
-
Fedotov, V.A.1
Schwanecke, A.S.2
Zheludev, N.I.3
Khardikov, V.V.4
Prosvirnin, S.L.5
-
7
-
-
17644395273
-
Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions
-
DOI 10.1038/nmat1377
-
Hwang, J. et al. Electro-tunable optical diode based on photonic bandgap liquidcrystal heterojunctions. Nat. Mater. 4, 383-387 (2005). (Pubitemid 40557889)
-
(2005)
Nature Materials
, vol.4
, Issue.5
, pp. 383-387
-
-
Hwang, J.1
Song, M.H.2
Park, B.3
Nishimura, S.4
Toyooka, T.5
Wu, J.W.6
Takanishi, Y.7
Ishikawa, K.8
Takezoe, H.9
-
8
-
-
82455164160
-
On-chip optical isolation in monolithically integrated non-reciprocal optical resonators
-
Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics 5, 758-762 (2011).
-
(2011)
Nat. Photonics
, vol.5
, pp. 758-762
-
-
Bi, L.1
-
9
-
-
79960632154
-
Asymmetric wave propagation in nonlinear systems
-
Lepri, S. & Casati, G. Asymmetric wave propagation in nonlinear systems. Phys. Rev. Lett. 106, 164101-164104 (2011).
-
(2011)
Phys. Rev. Lett
, vol.106
, pp. 164101-164104
-
-
Lepri, S.1
Casati, G.2
-
10
-
-
84856239562
-
An all-silicon passive optical diode
-
Fan, L. et al. An all-silicon passive optical diode. Science 335, 447-450 (2011).
-
(2011)
Science
, vol.335
, pp. 447-450
-
-
Fan, L.1
-
11
-
-
79961239060
-
Nonreciprocal light propagation in a silicon photonic circuit
-
Feng, L. et al.Nonreciprocal light propagation in a silicon photonic circuit. Science 333, 729-733 (2011).
-
(2011)
Science
, vol.333
, pp. 729-733
-
-
Feng, L.1
-
12
-
-
84866996778
-
Linear and passive silicon optical isolator
-
DOI:10.1038/srep00674
-
Wang, C., Zhong, X. & Li, Z. Linear and passive silicon optical isolator. Sci. Rep. 2, 674; DOI:10.1038/srep00674 (2012).
-
(2012)
Sci. Rep
, vol.2
, pp. 674
-
-
Wang, C.1
Zhong, X.2
Li, Z.3
-
13
-
-
80051581744
-
Ultralow power all-optical diode in photonic crystal heterostructures with broken spatial inversion symmetry
-
051107
-
Lu, C. et al. Ultralow power all-optical diode in photonic crystal heterostructures with broken spatial inversion symmetry. Appl. Phys. Lett. 99, 051107 (2011).
-
Appl. Phys. Lett
, vol.99
, pp. 2011
-
-
Lu, C.1
-
14
-
-
70349928588
-
Observation of unidirectional backscattering-immune topological electromagnetic states
-
Wang, Z., Chong, Y. & Jd Joannopoulos, M. S. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772-775 (2009).
-
(2009)
Nature
, vol.461
, pp. 772-775
-
-
Wang, Z.1
Chong, Y.2
Jd Joannopoulos, M.S.3
-
15
-
-
59349097272
-
Complete optical isolation created by indirect interband photonic transitions
-
Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics 3, 91-94 (2009).
-
(2009)
Nat. Photonics
, vol.3
, pp. 91-94
-
-
Yu, Z.1
Fan, S.2
-
16
-
-
34948839557
-
Passive all-optical diode using asymmetric nonlinear absorption
-
DOI 10.1063/1.2794015
-
Philip, R., Anija, M., Yelleswarapu, C. S. & Rao, D. V. G. L. N. Passive all-optical diode using asymmetric nonlinear absorption. Appl. Phys. Lett. 91, 141118 (2007). (Pubitemid 47531472)
-
(2007)
Applied Physics Letters
, vol.91
, Issue.14
, pp. 141118
-
-
Philip, R.1
Anija, M.2
Yelleswarapu, C.S.3
Rao, D.V.G.L.N.4
-
17
-
-
0000836128
-
Use of a graded gain random amplifier as an optical diode
-
Mujumdar, S. & Ramachandran, H. Use of a graded gain random amplifier as an optical diode. Opt. Lett. 26, 929-931 (2001). (Pubitemid 33693619)
-
(2001)
Optics Letters
, vol.26
, Issue.12
, pp. 929-931
-
-
Mujumdar, S.1
Ramachandran, H.2
-
18
-
-
0000387579
-
Waveguide optical isolator based on Mach-Zehnder interferometer
-
Fujita, J., Levy, M., Osgood, J. R. M., Wilkens, L. & Dotsch, H.Waveguide optical isolator based on Mach-Zehnder interferometer. Appl. Phys. Lett. 76, 2158-2160 (2000).
-
(2000)
Appl. Phys. Lett
, vol.76
, pp. 2158-2160
-
-
Fujita, J.1
Levy, M.2
Osgood, J.R.M.3
Wilkens, L.4
Dotsch, H.5
-
19
-
-
3242802959
-
Experimental demonstration of a photonic-crystal-fiber optical diode
-
Konorov, S. O. et al. Experimental demonstration of a photonic-crystal-fiber optical diode. Appl. Phys. B-Lasers and Optics 78, 547-550 (2004).
-
(2004)
Appl. Phys. B-Lasers and Optics
, vol.78
, pp. 547-550
-
-
Konorov, S.O.1
-
20
-
-
77950239793
-
Highly efficient all-optical diode action based on light-tunneling heterostructures
-
Xue, C., Jiang, H. & Chen, H. Highly efficient all-optical diode action based on light-tunneling heterostructures. Opt. Express 18, 7479-7487 (2010).
-
(2010)
Opt. Express
, vol.18
, pp. 7479-7487
-
-
Xue, C.1
Jiang, H.2
Chen, H.3
-
21
-
-
19944402894
-
Lasing in single cadmium sulfide nanowire optical cavities
-
DOI 10.1021/nl050440u
-
Agarwal, R., Barrelet, C. J. & Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 5, 917-920 (2005). (Pubitemid 40749054)
-
(2005)
Nano Letters
, vol.5
, Issue.5
, pp. 917-920
-
-
Agarwal, R.1
Barrelet, C.J.2
Lieber, C.M.3
-
22
-
-
0037448573
-
Single-nanowire electrically driven lasers
-
Duan, X. F., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241-245 (2003).
-
(2003)
Nature
, vol.421
, pp. 241-245
-
-
Duan, X.F.1
Huang, Y.2
Agarwal, R.3
Lieber, C.M.4
-
23
-
-
79961209221
-
Electrically pumped waveguide lasing from ZnO nanowires
-
Chu, S. et al. Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 6, 506-510 (2011).
-
(2011)
Nat. Nanotechnol
, vol.6
, pp. 506-510
-
-
Chu, S.1
-
24
-
-
0035827304
-
Room-temperature ultraviolet nanowire nanolasers
-
DOI 10.1126/science.1060367
-
Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897-1899 (2001). (Pubitemid 32538361)
-
(2001)
Science
, vol.292
, Issue.5523
, pp. 1897-1899
-
-
Huang, M.H.1
Mao, S.2
Feick, H.3
Yan, H.4
Wu, Y.5
Kind, H.6
Weber, E.7
Russo, R.8
Yang, P.9
-
25
-
-
70349843701
-
Nanowire photonics
-
Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nat. Photonics 3, 569-576 (2009).
-
(2009)
Nat. Photonics
, vol.3
, pp. 569-576
-
-
Yan, R.1
Gargas, D.2
Yang, P.3
-
26
-
-
4344577323
-
Nanoribbon waveguides for subwavelength photonics integration
-
DOI 10.1126/science.1100999
-
Law, M. et al. Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269-1273 (2004). (Pubitemid 39129227)
-
(2004)
Science
, vol.305
, Issue.5688
, pp. 1269-1273
-
-
Law, M.1
Sirbuly, D.J.2
Johnson, J.C.3
Goldberger, J.4
Saykally, R.J.5
Yang, P.6
-
27
-
-
84866315999
-
Wavelength-converted/selective waveguiding based on compositiongraded semiconductor nanowires
-
Xu, J. et al. Wavelength-converted/selective waveguiding based on compositiongraded semiconductor nanowires. Nano Lett. 12, 5003-5007 (2012).
-
(2012)
Nano Lett
, vol.12
, pp. 5003-5007
-
-
Xu, J.1
-
28
-
-
36248990358
-
Color-changeable optical transport through Se-doped CdS 1D nanostructures
-
DOI 10.1021/nl0710295
-
Pan, A. et al. Color-changeable optical transport through Se-doped CdS 1D nanostructures. Nano Lett. 7, 2970-2975 (2007). (Pubitemid 350132914)
-
(2007)
Nano Letters
, vol.7
, Issue.10
, pp. 2970-2975
-
-
Pan, A.1
Wang, X.2
He, P.3
Zhang, Q.4
Wan, Q.5
Zacharias, M.6
Zhu, X.7
Zou, B.8
-
29
-
-
26344442097
-
The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids
-
Urbach, F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324-1324 (1953).
-
(1953)
Phys. Rev
, vol.92
, pp. 1324-1324
-
-
Urbach, F.1
-
30
-
-
79951841773
-
Spatial bandgap engineering along single alloy nanowires
-
Gu, F. et al. Spatial bandgap engineering along single alloy nanowires. J. Am. Chem. Soc. 133, 2037-2039 (2011).
-
(2011)
J. Am. Chem. Soc
, vol.133
, pp. 2037-2039
-
-
Gu, F.1
-
31
-
-
80755189344
-
On-nanowire spatial bandgap design for white light emission
-
Yang, Z. Y. et al. On-nanowire spatial bandgap design for white light emission. Nano Lett. 11, 5085-5089 (2011).
-
(2011)
Nano Lett
, vol.11
, pp. 5085-5089
-
-
Yang, Z.Y.1
-
32
-
-
84864475149
-
Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures
-
Xu, J. et al. Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. J. Am. Chem. Soc. 134, 12394-12397 (2012).
-
(2012)
J. Am. Chem. Soc
, vol.134
, pp. 12394-12397
-
-
Xu, J.1
-
33
-
-
0346096514
-
Subwavelength-diameter silica wires for low-loss optical wave guiding
-
Tong, L. M. et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816-819 (2003).
-
(2003)
Nature
, vol.426
, pp. 816-819
-
-
Tong, L.M.1
|