메뉴 건너뛰기




Volumn 2, Issue , 2006, Pages 893-904

Generalized relevance learning vector quantization for classification- driven feature extraction from hyperspectral data

Author keywords

[No Author keywords available]

Indexed keywords

ANALYTICAL TOOL; CLASSIFICATION ACCURACY; CONVERGENCE RATES; DIVERSE MATERIALS; GENERALIZED RELEVANCE LEARNING VECTOR QUANTIZATIONS; HIGH DIMENSIONAL DATA; HIGHLY-CORRELATED; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL DATA; INPUT DIMENSIONS; KOHONEN; LEARNING VECTOR QUANTIZATION; SIGNAL CONTENT; SPECTRAL CHANNELS; SPECTRAL DOMAINS; SUPERVISED CLASSIFICATION;

EID: 84869041830     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (12)
  • 3
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer, B., and T. Villmann (2002). Generalized relevance learning vector quantization, Neural Networks, 15:1059-1068.
    • (2002) Neural Networks , vol.15 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 4
    • 0347020377 scopus 로고    scopus 로고
    • Summaries of the 6th annual JPL airborne geoscience workshop
    • Pasadena, CA, March 4-6
    • Green, R. O. (1996). Summaries of the 6th Annual JPL Airborne Geoscience Workshop, 1. AVIRIS Workshop, Pasadena, CA, March 4-6.
    • (1996) 1. AVIRIS Workshop
    • Green, R.O.1
  • 5
    • 0003410791 scopus 로고    scopus 로고
    • 3rd ed. Springer-Verlag Berlin Heidelberg
    • Kohonen, T. (2001). Self-Organizing Maps, 3rd ed. Springer-Verlag Berlin Heidelberg.
    • (2001) Self-Organizing Maps
    • Kohonen, T.1
  • 7
    • 0030295428 scopus 로고    scopus 로고
    • Mapping of spectral variations on the surface of mars from high spectral resolution telescopic images
    • Merényi, E., R. Singer, and J. Miller (1996). Mapping of spectral variations on the surface of mars from high spectral resolution telescopic images, ICARUS, 124:280-295.
    • (1996) ICARUS , vol.124 , pp. 280-295
    • Merényi, E.1    Singer, R.2    Miller, J.3
  • 8
    • 4243611925 scopus 로고    scopus 로고
    • Precision mining of high-dimensional patterns with self-organizing maps: Interpretation of hyperspectral images, in QuoVadis Computational Intelligence: New Trends and Approaches in Computational Intelligence
    • P. Sincak and J. Vascak, Eds., Physica-Verlag. Available
    • Merényi, E. (2000). Precision mining of high-dimensional patterns with self-organizing maps: Interpretation of hyperspectral images, in QuoVadis Computational Intelligence: New Trends and Approaches in Computational Intelligence. Studies in Fuzziness and Soft Computing., P. Sincak and J. Vascak, Eds., 54. Physica-Verlag. Available: http://www.ece.rice.edu/~erzsebet/ publications.html.
    • (2000) Studies in Fuzziness and Soft Computing , vol.54
    • Merényi, E.1
  • 9
    • 0029508084 scopus 로고
    • Classification of hyperspectral images using wavelet transforms and neural networks
    • Andrew F. Laine; Michael A. Unser; Mladen V. Wickerhauser; Eds
    • Moon, T., and E. Merényi (1995). Classification of hyperspectral images using wavelet transforms and neural networks, in Proceedings of the. SPIE: Wavelet Applications in Signal and Image Processing III, Andrew F. Laine; Michael A. Unser; Mladen V. Wickerhauser; Eds., 2569:725-735.
    • (1995) Proceedings of the. SPIE: Wavelet Applications in Signal and Image Processing III , vol.2569 , pp. 725-735
    • Moon, T.1    Merényi, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.