메뉴 건너뛰기




Volumn 7665 LNCS, Issue PART 3, 2012, Pages 585-593

A knowledge-driven bi-clustering method for mining noisy datasets

Author keywords

Constrained biclustering; dense subgraphs; maximal flow minimal cut; noisy datasets

Indexed keywords

ADAPTATION MECHANISM; BACKGROUND KNOWLEDGE; BI CLUSTERS; BICLUSTERING; BICLUSTERING ALGORITHM; CONSTRAINED BI-CLUSTERING; DATA MINING METHODS; DATA SETS; DENSE REGION; GENE EXPRESSION DATASETS; GRAPH ALGORITHMS; MAXIMAL FLOW; MAXIMUM FLOWS; MINIMUM CUT; REAL DATA SETS; SUBGRAPHS;

EID: 84869022987     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-34487-9_71     Document Type: Conference Paper
Times cited : (3)

References (23)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • ACM Press
    • Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Proc. SIGMOD, pp. 207-216. ACM Press (1993)
    • (1993) Proc. SIGMOD , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.N.3
  • 2
    • 2542567719 scopus 로고    scopus 로고
    • Semi-supervised clustering by seeding
    • Basu, S., Banerjee, A., Mooney, R.: Semi-supervised clustering by seeding. In: Proc. ICML 2002, pp. 27-34 (2002)
    • (2002) Proc. ICML 2002 , pp. 27-34
    • Basu, S.1    Banerjee, A.2    Mooney, R.3
  • 3
    • 0036375743 scopus 로고    scopus 로고
    • Discovering local structure in gene expression data: The order-preserving submatrix problem
    • Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: the order-preserving submatrix problem. In: Proc. RECOMB, pp. 49-57 (2002)
    • (2002) Proc. RECOMB , pp. 49-57
    • Ben-Dor, A.1    Chor, B.2    Karp, R.3    Yakhini, Z.4
  • 4
    • 33746601476 scopus 로고    scopus 로고
    • Mining a new fault-tolerant pattern type as an alternative to formal concept discovery
    • Besson, J., Robardet, C., Boulicaut, J.F.: Mining a new fault-tolerant pattern type as an alternative to formal concept discovery. In: Proc. ICCS, pp. 144-157 (2006)
    • (2006) Proc. ICCS , pp. 144-157
    • Besson, J.1    Robardet, C.2    Boulicaut, J.F.3
  • 5
    • 84855775723 scopus 로고    scopus 로고
    • Identification of functional modules based on transcriptional regulation structure
    • Birmele, E., Elati, M., Rouveirol, C., Ambroise, C.: Identification of functional modules based on transcriptional regulation structure. BMC 2(Suppl. 4), S4 (2008)
    • (2008) BMC , vol.2 , Issue.SUPPL. 4
    • Birmele, E.1    Elati, M.2    Rouveirol, C.3    Ambroise, C.4
  • 6
    • 65449157912 scopus 로고    scopus 로고
    • Approximate frequent itemset mining in the presence of random noise
    • Cheng, H., Yu, P.S., Han, J.: Approximate frequent itemset mining in the presence of random noise. Soft Comp. Kno. Dis. Data Min., 363-389 (2008)
    • (2008) Soft Comp. Kno. Dis. Data Min. , pp. 363-389
    • Cheng, H.1    Yu, P.S.2    Han, J.3
  • 7
    • 0034566393 scopus 로고    scopus 로고
    • Biclustering of expression data
    • Cheng, Y., Church, G.: Biclustering of expression data. In: ISMB, pp. 8:93-103 (2000)
    • (2000) ISMB
    • Cheng, Y.1    Church, G.2
  • 9
    • 71149116739 scopus 로고    scopus 로고
    • A scalable framework for discovering coherent co-clusters in noisy data
    • Deodhar, M., Gupta, G., Ghosh, J., Cho, H., Dhillon, I.S.: A scalable framework for discovering coherent co-clusters in noisy data. In: Proc. ICML 2009, p. 31 (2009)
    • (2009) Proc. ICML 2009 , pp. 31
    • Deodhar, M.1    Gupta, G.2    Ghosh, J.3    Cho, H.4    Dhillon, I.S.5
  • 11
    • 79954425823 scopus 로고    scopus 로고
    • Using the bagging approach for biclustering of gene expression data
    • Hanczar, B., Nadif, M.: Using the bagging approach for biclustering of gene expression data. Neurocomputing 74(10), 1595-1605 (2011)
    • (2011) Neurocomputing , vol.74 , Issue.10 , pp. 1595-1605
    • Hanczar, B.1    Nadif, M.2
  • 12
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27-30 (2000)
    • (2000) Nucleic Acids Res. , vol.28 , Issue.1 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 13
    • 0036012349 scopus 로고    scopus 로고
    • Plaid models for gene expression data
    • Lazzeroni, L., Owen, A.: Plaid models for gene expression data. Statistica Sinica 12, 61-86 (2000)
    • (2000) Statistica Sinica , vol.12 , pp. 61-86
    • Lazzeroni, L.1    Owen, A.2
  • 14
    • 9444239213 scopus 로고    scopus 로고
    • A probalistic functionnal network of yeast genes
    • Lee, I., Date, S., Adai, A., Marcotte, E.: A probalistic functionnal network of yeast genes. Science 306(5701), 1555-1558 (2004)
    • (2004) Science , vol.306 , Issue.5701 , pp. 1555-1558
    • Lee, I.1    Date, S.2    Adai, A.3    Marcotte, E.4
  • 15
    • 52649178351 scopus 로고    scopus 로고
    • Maximal quasi-bicliques with balanced noise tolerance: Concepts and co-clustering applications
    • Li, J., Sim, K., Liu, G., Wong, L.: Maximal quasi-bicliques with balanced noise tolerance: Concepts and co-clustering applications. In: SDM, pp. 72-83 (2008)
    • (2008) SDM , pp. 72-83
    • Li, J.1    Sim, K.2    Liu, G.3    Wong, L.4
  • 16
    • 33745443433 scopus 로고    scopus 로고
    • Mining approximate frequent itemsets in the presence of noise: Algorithm and analysis
    • Liu, J., Paulsen, S., Sun, X.,Wang, W., Nobel, A.B., Prins, J.: Mining approximate frequent itemsets in the presence of noise: Algorithm and analysis. In: SDM (2006)
    • (2006) SDM
    • Liu, J.1    Paulsen, S.2    Sun, X.3    Wang, W.4    Nobel, A.B.5    Prins, J.6
  • 17
    • 84855790147 scopus 로고    scopus 로고
    • Itemset mining in noisy contexts: A hybrid approach
    • Mouhoubi, K., Létocart, L., Rouveirol, C.: Itemset mining in noisy contexts: A hybrid approach. In: Proc. ICTAI 2011, pp. 33-40 (2011)
    • (2011) Proc. ICTAI 2011 , pp. 33-40
    • Mouhoubi, K.1    Létocart, L.2    Rouveirol, C.3
  • 18
    • 78751645135 scopus 로고    scopus 로고
    • Biclustering of gene expression data by correlation-based scatter search
    • Nepomuceno, J., Lora, A.T., Aguilar-Ruiz, J.: Biclustering of gene expression data by correlation-based scatter search. BioData Mining 4(3) (2011)
    • (2011) BioData Mining , vol.4 , Issue.3
    • Nepomuceno, J.1    Lora, A.T.2    Aguilar-Ruiz, J.3
  • 19
    • 70350666763 scopus 로고    scopus 로고
    • Towards efficient mining of proportional faulttolerant frequent itemsets
    • Poernomo, A.K., Gopalkrishnan, V.: Towards efficient mining of proportional faulttolerant frequent itemsets. In: Proc. KDD 2009, pp. 697-706 (2009)
    • (2009) Proc. KDD 2009 , pp. 697-706
    • Poernomo, A.K.1    Gopalkrishnan, V.2
  • 20
    • 33646137384 scopus 로고    scopus 로고
    • A systematic comparison and evaluation of biclustering methods for gene expression data
    • Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122-1129 (2006)
    • (2006) Bioinformatics , vol.22 , Issue.9 , pp. 1122-1129
    • Prelic, A.1    Bleuler, S.2    Zimmermann, P.3    Wille, A.4    Bühlmann, P.5    Gruissem, W.6
  • 22
    • 44649132639 scopus 로고    scopus 로고
    • Ambiguous Frequent Itemset Mining and Polynomial Delay Enumeration
    • Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. Springer, Heidelberg
    • Uno, T., Arimura, H.: Ambiguous Frequent Itemset Mining and Polynomial Delay Enumeration. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 357-368. Springer, Heidelberg (2008)
    • (2008) LNCS (LNAI) , vol.5012 , pp. 357-368
    • Uno, T.1    Arimura, H.2
  • 23
    • 0001898293 scopus 로고    scopus 로고
    • Clustering with instance-level constraints
    • Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proc. ICML 2000, pp. 1103-1110 (2000)
    • (2000) Proc. ICML 2000 , pp. 1103-1110
    • Wagstaff, K.1    Cardie, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.