메뉴 건너뛰기




Volumn 26, Issue 21, 2012, Pages 2443-2455

Mechanism for epigenetic variegation of gene expression at yeast telomeric heterochromatin

Author keywords

Epigenetics; Histones; Position effect variegation; Silencing; Sir complex; Telomeres

Indexed keywords

RAP1 PROTEIN; SILENT INFORMATION REGULATOR PROTEIN;

EID: 84868535953     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.201095.112     Document Type: Article
Times cited : (59)

References (85)
  • 1
    • 37349107849 scopus 로고    scopus 로고
    • Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin
    • Altaf M, Utley RT, Lacoste N, Tan S, Briggs SD, Cote J. 2007. Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin. Mol Cell 28: 1002-1014.
    • (2007) Mol Cell , vol.28 , pp. 1002-1014
    • Altaf, M.1    Utley, R.T.2    Lacoste, N.3    Tan, S.4    Briggs, S.D.5    Cote, J.6
  • 2
    • 81555212272 scopus 로고    scopus 로고
    • Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 A resolution
    • Armache KJ, Garlick JD, Canzio D, Narlikar GJ, Kingston RE. 2011. Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 A resolution. Science 334: 977-982.
    • (2011) Science , vol.334 , pp. 977-982
    • Armache, K.J.1    Garlick, J.D.2    Canzio, D.3    Narlikar, G.J.4    Kingston, R.E.5
  • 3
    • 0023484186 scopus 로고
    • 5-Fluoroorotic acid as a selective agent in yeast molecular genetics
    • Boeke JD, Trueheart J, Natsoulis G, Fink GR. 1987. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154: 164-175.
    • (1987) Methods Enzymol , vol.154 , pp. 164-175
    • Boeke, J.D.1    Trueheart, J.2    Natsoulis, G.3    Fink, G.R.4
  • 5
    • 0023797283 scopus 로고
    • Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae
    • Buchman AR, Kimmerly WJ, Rine J, Kornberg RD. 1988. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol Cell Biol 8: 210-225.
    • (1988) Mol Cell Biol , vol.8 , pp. 210-225
    • Buchman, A.R.1    Kimmerly, W.J.2    Rine, J.3    Kornberg, R.D.4
  • 6
    • 11844303478 scopus 로고    scopus 로고
    • Mechanism of transcriptional silencing in yeast
    • Chen L, Widom J. 2005. Mechanism of transcriptional silencing in yeast. Cell 120: 3 7-48.
    • (2005) Cell , vol.120 , Issue.3 , pp. 7-48
    • Chen, L.1    Widom, J.2
  • 8
    • 0031459979 scopus 로고    scopus 로고
    • Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres
    • Ekwall K, Olsson T, Turner BM, Cranston G, Allshire RC. 1997. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91: 1021-1032.
    • (1997) Cell , vol.91 , pp. 1021-1032
    • Ekwall, K.1    Olsson, T.2    Turner, B.M.3    Cranston, G.4    Allshire, R.C.5
  • 9
    • 34547949573 scopus 로고    scopus 로고
    • A charge-based interaction between histone H4 and Dotl is required for H3K79 methylation and telomere silencing: Identification of a new trans-histone pathway
    • Fingerman IM, Li HC, Briggs SD. 2007. A charge-based interaction between histone H4 and Dotl is required for H3K79 methylation and telomere silencing: Identification of a new trans-histone pathway. Genes Dev 21: 2018-2029.
    • (2007) Genes Dev , vol.21 , pp. 2018-2029
    • Fingerman, I.M.1    Li, H.C.2    Briggs, S.D.3
  • 11
    • 0027426749 scopus 로고
    • DUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae
    • Gadsden MH, McIntosh EM, Game JC, Wilson PJ, Haynes RH. 1993. dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae. EMBO J 12: 4425-4431.
    • (1993) EMBO J , vol.12 , pp. 4425-4431
    • Gadsden, M.H.1    McIntosh, E.M.2    Game, J.C.3    Wilson, P.J.4    Haynes, R.H.5
  • 12
    • 44949188488 scopus 로고    scopus 로고
    • Sir2 silences gene transcription by targeting the transition between RNA polymerase II initiation and elongation
    • Gao L, Gross DS. 2008. Sir2 silences gene transcription by targeting the transition between RNA polymerase II initiation and elongation. Mol Cell Biol 28: 3979-3994.
    • (2008) Mol Cell Biol , vol.28 , pp. 3979-3994
    • Gao, L.1    Gross, D.S.2
  • 13
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
    • Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350: 87-96.
    • (2002) Methods Enzymol , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 14
    • 39049103917 scopus 로고    scopus 로고
    • Chromatin structure and the regulation of gene expression: The lessons of PEV in Drosophila
    • Girton JR, Johansen KM. 2008. Chromatin structure and the regulation of gene expression: The lessons of PEV in Drosophila. Adv Genet 61: 1-43.
    • (2008) Adv Genet , vol.61 , pp. 1-43
    • Girton, J.R.1    Johansen, K.M.2
  • 15
    • 0025201982 scopus 로고
    • Cerevisiae telomeres: Reversible repression of Pol II transcription
    • Position effect at S
    • Gottschling DE, Aparicio OM, Billington BL, Zakian VA. 1990. Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription. Cell 63: 751-762.
    • (1990) Cell , vol.63 , pp. 751-762
    • Gottschling, D.E.1    Aparicio, O.M.2    Billington, B.L.3    Zakian, V.A.4
  • 16
    • 2542428546 scopus 로고    scopus 로고
    • Structure and mechanism of the RNA polymerase II transcription machinery
    • Hahn S. 2004. Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 11: 394-403.
    • (2004) Nat Struct Mol Biol , vol.11 , pp. 394-403
    • Hahn, S.1
  • 17
    • 0029817763 scopus 로고    scopus 로고
    • Spreading of transcriptional repressor SIR3 from telomeric heterochromatin
    • Hecht A, Strahl-Bolsinger S, Grunstein M. 1996. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383: 92-96.
    • (1996) Nature , vol.383 , pp. 92-96
    • Hecht, A.1    Strahl-Bolsinger, S.2    Grunstein, M.3
  • 18
    • 0036261650 scopus 로고    scopus 로고
    • Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation
    • Hoppe GJ, Tanny JC, Rudner AD, Gerber SA, Danaie S, Gygi SP, Moazed D. 2002. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol 22: 4167-4180.
    • (2002) Mol Cell Biol , vol.22 , pp. 4167-4180
    • Hoppe, G.J.1    Tanny, J.C.2    Rudner, A.D.3    Gerber, S.A.4    Danaie, S.5    Gygi, S.P.6    Moazed, D.7
  • 19
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S, Armstrong CM, Kaeberlein M, Guarente L. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403: 795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 20
    • 0025002966 scopus 로고
    • Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae
    • Johnson LM, Kayne PS, Kahn ES, Grunstein M. 1990. Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae. Proc Natl Acad Sci 87: 6286-6290.
    • (1990) Proc Natl Acad Sci , vol.87 , pp. 6286-6290
    • Johnson, L.M.1    Kayne, P.S.2    Kahn, E.S.3    Grunstein, M.4
  • 22
    • 52949107241 scopus 로고    scopus 로고
    • The histone H3K79 methyltransferase Dot 1 L is essential for mammalian development and heterochromatin structure
    • Doi:10.1371/journal.pgen.1000190
    • Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S, Baltus G, Kadam S, Zhai H, Valdez R, et al. 2008. The histone H3K79 methyltransferase Dot 1 L is essential for mammalian development and heterochromatin structure. PLoS Genet 4: e1000190. doi:10.1371/journal.pgen.1000190.
    • (2008) PLoS Genet , vol.4
    • Jones, B.1    Su, H.2    Bhat, A.3    Lei, H.4    Bajko, J.5    Hevi, S.6    Baltus, G.7    Kadam, S.8    Zhai, H.9    Valdez, R.10
  • 23
    • 0942290540 scopus 로고    scopus 로고
    • Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B
    • Kao CF, Hillyer C, Tsukuda T, Henry K, Berger S, Osley MA. 2004. Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev 18: 184-195.
    • (2004) Genes Dev , vol.18 , pp. 184-195
    • Kao, C.F.1    Hillyer, C.2    Tsukuda, T.3    Henry, K.4    Berger, S.5    Osley, M.A.6
  • 24
    • 21844454183 scopus 로고    scopus 로고
    • Heterochromatin formation involves changes in histone modifications over multiple cell generations
    • Katan-Khaykovich Y, Struhl K. 2005. Heterochromatin formation involves changes in histone modifications over multiple cell generations. EMBO J 24: 2138-2149.
    • (2005) EMBO J , vol.24 , pp. 2138-2149
    • Katan-Khaykovich, Y.1    Struhl, K.2
  • 25
    • 0036843170 scopus 로고    scopus 로고
    • Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing
    • Kimura A, Umehara T, Horikoshi M. 2002. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 32: 370-377.
    • (2002) Nat Genet , vol.32 , pp. 370-377
    • Kimura, A.1    Umehara, T.2    Horikoshi, M.3
  • 26
    • 31344436655 scopus 로고    scopus 로고
    • Cell cycle requirements in assembling silent chromatin in Saccharomyces cerevisiae
    • Kirchmaier AL, Rine J. 2006. Cell cycle requirements in assembling silent chromatin in Saccharomyces cerevisiae. Mol Cell Biol 26: 852-862.
    • (2006) Mol Cell Biol , vol.26 , pp. 852-862
    • Kirchmaier, A.L.1    Rine, J.2
  • 29
    • 0027326367 scopus 로고
    • RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae
    • Kyrion G, Liu K, Liu C, Lustig AJ. 1993. RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. Genes Dev 7: 1146-1159.
    • (1993) Genes Dev , vol.7 , pp. 1146-1159
    • Kyrion, G.1    Liu, K.2    Liu, C.3    Lustig, A.J.4
  • 31
    • 0029778954 scopus 로고    scopus 로고
    • A novel mechanism for telomere size control in Saccharomyces cerevisiae
    • Li B, Lustig AJ. 1996. A novel mechanism for telomere size control in Saccharomyces cerevisiae. Genes Dev 10: 1310-1326.
    • (1996) Genes Dev , vol.10 , pp. 1310-1326
    • Li, B.1    Lustig, A.J.2
  • 33
    • 84859929012 scopus 로고    scopus 로고
    • In vitro transcription and immobilized template analysis of preinitiation complexes
    • 12.14.1-12.14.19
    • Lin JJ, Carey M. 2012. In vitro transcription and immobilized template analysis of preinitiation complexes. Curr Protoc Mol Biol 97: 12.14.1-12.14.19.
    • (2012) Curr Protoc Mol Biol , vol.97
    • Lin, J.J.1    Carey, M.2
  • 34
    • 19344377042 scopus 로고    scopus 로고
    • Assembly of the SIR complex and its regulation by O-acetylADP-ribose, a product of NAD-dependent histone deacetylation
    • Liou GG, Tanny JC, Kruger RG, Walz T, Moazed D. 2005. Assembly of the SIR complex and its regulation by O-acetylADP-ribose, a product of NAD-dependent histone deacetylation. Cell 121: 515-527.
    • (2005) Cell , vol.121 , pp. 515-527
    • Liou, G.G.1    Tanny, J.C.2    Kruger, R.G.3    Walz, T.4    Moazed, D.5
  • 35
    • 0031587289 scopus 로고    scopus 로고
    • Characterization of nucleosome core particles containing histone proteins made in bacteria
    • Luger K, Rechsteiner TJ, Flaus AJ, Waye MM, Richmond TJ. 1997. Characterization of nucleosome core particles containing histone proteins made in bacteria. J Mol Biol 272: 301-311.
    • (1997) J Mol Biol , vol.272 , pp. 301-311
    • Luger, K.1    Rechsteiner, T.J.2    Flaus, A.J.3    Waye, M.M.4    Richmond, T.J.5
  • 36
    • 0037097940 scopus 로고    scopus 로고
    • Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast
    • Luo K, Vega-Palas MA, Grunstein M. 2002. Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev 16: 1528-1539.
    • (2002) Genes Dev , vol.16 , pp. 1528-1539
    • Luo, K.1    Vega-Palas, M.A.2    Grunstein, M.3
  • 37
    • 67650821427 scopus 로고    scopus 로고
    • From a to a: Yeast as a model for cellular differentiation
    • Cold Spring Harbor, NY
    • Madhani HD. 2007. From a to a: Yeast as a model for cellular differentiation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    • (2007) Cold Spring Harbor Laboratory Press
    • Madhani, H.D.1
  • 39
    • 0037423930 scopus 로고    scopus 로고
    • Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin
    • Meneghini MD, Wu M, Madhani HD. 2003. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112: 725-736.
    • (2003) Cell , vol.112 , pp. 725-736
    • Meneghini, M.D.1    Wu, M.2    Madhani, H.D.3
  • 40
    • 33747609801 scopus 로고    scopus 로고
    • Genome-wide patterns of histone modifications in yeast
    • Millar CB, Grunstein M. 2006. Genome-wide patterns of histone modifications in yeast. Nat Rev Mol Cell Biol 7: 657-666.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 657-666
    • Millar, C.B.1    Grunstein, M.2
  • 41
    • 0033533699 scopus 로고    scopus 로고
    • Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins
    • Mishra K, Shore D. 1999. Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins. Curr Biol 9: 1123-1126.
    • (1999) Curr Biol , vol.9 , pp. 1123-1126
    • Mishra, K.1    Shore, D.2
  • 42
    • 80052009948 scopus 로고    scopus 로고
    • Mechanisms for the inheritance of chromatin States
    • Moazed D. 2011. Mechanisms for the inheritance of chromatin States. Cell 146: 510-518.
    • (2011) Cell , vol.146 , pp. 510-518
    • Moazed, D.1
  • 43
    • 0030951007 scopus 로고    scopus 로고
    • Silent information regulator protein complexes in Saccharomyces cerevisiae: A SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3
    • Moazed D, Kistler A, Axelrod A, Rine J, Johnson AD. 1997. Silent information regulator protein complexes in Saccharomyces cerevisiae: A SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc Natl Acad Sci 94: 2186-2191.
    • (1997) Proc Natl Acad Sci , vol.94 , pp. 2186-2191
    • Moazed, D.1    Kistler, A.2    Axelrod, A.3    Rine, J.4    Johnson, A.D.5
  • 44
    • 36749094748 scopus 로고    scopus 로고
    • Telomere position effect: Silencing near the end
    • In Telomeres, Cold Spring Harbor Monograph Series 45 (ed. T de Lange et al.), Cold Spring Harbor, NY
    • Mondoux MA, Zakian VA. 2006. Telomere position effect: Silencing near the end. In Telomeres, Cold Spring Harbor Monograph Series 45 (ed. T de Lange et al.), pp. 261-316. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    • (2006) Cold Spring Harbor Laboratory Press , pp. 261-316
    • Mondoux, M.A.1    Zakian, V.A.2
  • 45
    • 0028004378 scopus 로고
    • Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1
    • Moretti P, Freeman K, Coodly L, Shore D. 1994. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev 8: 2257-2269.
    • (1994) Genes Dev , vol.8 , pp. 2257-2269
    • Moretti, P.1    Freeman, K.2    Coodly, L.3    Shore, D.4
  • 46
    • 0034724537 scopus 로고    scopus 로고
    • A chromodomain protein, Swi6, performs imprinting functions in fission yeast during mitosis and meiosis
    • Nakayama J, Klar AJ, Grewal SI. 2000. A chromodomain protein, Swi6, performs imprinting functions in fission yeast during mitosis and meiosis. Cell 101: 307-317.
    • (2000) Cell , vol.101 , pp. 307-317
    • Nakayama, J.1    Klar, A.J.2    Grewal, S.I.3
  • 47
    • 0037098044 scopus 로고    scopus 로고
    • Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association
    • Ng HH, Feng Q, Wang H, Erdjument-Bromage H, Tempst P, Zhang Y, Struhl K. 2002. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 16: 1518-1527.
    • (2002) Genes Dev , vol.16 , pp. 1518-1527
    • Ng, H.H.1    Feng, Q.2    Wang, H.3    Erdjument-Bromage, H.4    Tempst, P.5    Zhang, Y.6    Struhl, K.7
  • 48
    • 0037452770 scopus 로고    scopus 로고
    • Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: A potential mechanism for position-effect variegation
    • Ng HH, Ciccone DN, Morshead KB, Oettinger MA, Struhl K. 2003. Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: A potential mechanism for position-effect variegation. Proc Natl Acad Sci 100: 1820-1825.
    • (2003) Proc Natl Acad Sci , vol.100 , pp. 1820-1825
    • Ng, H.H.1    Ciccone, D.N.2    Morshead, K.B.3    Oettinger, M.A.4    Struhl, K.5
  • 49
    • 79959960773 scopus 로고    scopus 로고
    • The diverse functions of Dot 1 and H3K79 methylation
    • Nguyen AT, Zhang Y. 2011. The diverse functions of Dot 1 and H3K79 methylation. Genes Dev 25: 1345-1358.
    • (2011) Genes Dev , vol.25 , pp. 1345-1358
    • Nguyen, A.T.1    Zhang, Y.2
  • 50
    • 0028220710 scopus 로고
    • Modulating the potency of an activator in a yeast in vitro transcription system
    • Ohashi Y, Brickman JM, Furman E, Middleton B, Carey M. 1994. Modulating the potency of an activator in a yeast in vitro transcription system. Mol Cell Biol 14: 2731-2739.
    • (1994) Mol Cell Biol , vol.14 , pp. 2731-2739
    • Ohashi, Y.1    Brickman, J.M.2    Furman, E.3    Middleton, B.4    Carey, M.5
  • 51
    • 37349033583 scopus 로고    scopus 로고
    • Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly
    • Onishi M, Liou GG, Buchberger JR, Walz T, Moazed D. 2007. Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. Mol Cell 28: 1015-1028.
    • (2007) Mol Cell , vol.28 , pp. 1015-1028
    • Onishi, M.1    Liou, G.G.2    Buchberger, J.R.3    Walz, T.4    Moazed, D.5
  • 52
    • 67649846287 scopus 로고    scopus 로고
    • The establishment of gene silencing at single-cell resolution
    • Osborne EA, Dudoit S, Rine J. 2009. The establishment of gene silencing at single-cell resolution. Nat Genet 41: 800-806.
    • (2009) Nat Genet , vol.41 , pp. 800-806
    • Osborne, E.A.1    Dudoit, S.2    Rine, J.3
  • 53
    • 0033960607 scopus 로고    scopus 로고
    • Telomere structure regulates the heritability of repressed subtelomeric chromatin in Saccharomyces cerevisiae
    • Park Y, Lustig AJ. 2000. Telomere structure regulates the heritability of repressed subtelomeric chromatin in Saccharomyces cerevisiae. Genetics 154: 587-598.
    • (2000) Genetics , vol.154 , pp. 587-598
    • Park, Y.1    Lustig, A.J.2
  • 54
    • 67149135194 scopus 로고    scopus 로고
    • Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways
    • Pinson B, Vaur S, Sagot I, Coulpier F, Lemoine S, DaignanFornier B. 2009. Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways. Genes Dev 23: 1399-1407.
    • (2009) Genes Dev , vol.23 , pp. 1399-1407
    • Pinson, B.1    Vaur, S.2    Sagot, I.3    Coulpier, F.4    Lemoine, S.5    Daignanfornier, B.6
  • 56
    • 84868536671 scopus 로고    scopus 로고
    • Genes & signals
    • Cold Spring Harbor, NY
    • Ptashne M. 2002. Genes & signals. CSHL Press, Cold Spring Harbor, NY.
    • (2002) CSHL Press
    • Ptashne, M.1
  • 57
    • 0842304212 scopus 로고    scopus 로고
    • RNA polymerase II (Pol II)-TFIIF and Pol II-mediator complexes: The major stable Pol II complexes and their activity in transcription initiation and reinitiation
    • Rani PG, Ranish JA, Hahn S. 2004. RNA polymerase II (Pol II)-TFIIF and Pol II-mediator complexes: The major stable Pol II complexes and their activity in transcription initiation and reinitiation. Mol Cell Biol 24: 1709-1720.
    • (2004) Mol Cell Biol , vol.24 , pp. 1709-1720
    • Rani, P.G.1    Ranish, J.A.2    Hahn, S.3
  • 58
    • 0002021176 scopus 로고    scopus 로고
    • Introduction
    • Cold Spring Harbor Monograph Series 32 (ed. VEA Russo et al.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    • Riggs AD, Martienssen RA, Russo VEA. 1996. Introduction. In Epigenetic mechanisms of gene regulation, Cold Spring Harbor Monograph Series 32 (ed. VEA Russo et al.), pp. 1-4. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    • (1996) In Epigenetic mechanisms of gene regulation , pp. 1-4
    • Riggs, A.D.1    Martienssen, R.A.2    Russo, V.E.A.3
  • 59
    • 79953312638 scopus 로고    scopus 로고
    • A common telomeric gene silencing assay is affected by nucleotide metabolism
    • Rossmann MP, Luo W, Tsaponina O, Chabes A, Stillman B. 2011. A common telomeric gene silencing assay is affected by nucleotide metabolism. Mol Cell 42: 127-136.
    • (2011) Mol Cell , vol.42 , pp. 127-136
    • Rossmann, M.P.1    Luo, W.2    Tsaponina, O.3    Chabes, A.4    Stillman, B.5
  • 60
    • 0037636027 scopus 로고    scopus 로고
    • The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae
    • Rusche LN, Kirchmaier AL, Rine J. 2003. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72: 481-516.
    • (2003) Annu Rev Biochem , vol.72 , pp. 481-516
    • Rusche, L.N.1    Kirchmaier, A.L.2    Rine, J.3
  • 61
    • 33846998997 scopus 로고    scopus 로고
    • A flexible protein linker improves the function of epitope-tagged proteins in Saccharomyces cerevisiae
    • Sabourin M, Tuzon CT, Fisher TS, Zakian VA. 2007. A flexible protein linker improves the function of epitope-tagged proteins in Saccharomyces cerevisiae. Yeast 24: 39-45.
    • (2007) Yeast , vol.24 , pp. 39-45
    • Sabourin, M.1    Tuzon, C.T.2    Fisher, T.S.3    Zakian, V.A.4
  • 62
    • 9144253287 scopus 로고    scopus 로고
    • Methylation of H3 lysine 4 at euchromatin promotes Sir3p association with heterochromatin
    • Santos-Rosa H, Bannister AJ, Dehe PM, Geli V, Kouzarides T. 2004. Methylation of H3 lysine 4 at euchromatin promotes Sir3p association with heterochromatin. J Biol Chem 279: 47506-47512.
    • (2004) J Biol Chem , vol.279 , pp. 47506-47512
    • Santos-Rosa, H.1    Bannister, A.J.2    Dehe, P.M.3    Geli, V.4    Kouzarides, T.5
  • 63
    • 0035805063 scopus 로고    scopus 로고
    • Silenced chromatin is permissive to activator binding and PIC recruitment
    • Sekinger EA, Gross DS. 2001. Silenced chromatin is permissive to activator binding and PIC recruitment. Cell 105: 403-414.
    • (2001) Cell , vol.105 , pp. 403-414
    • Sekinger, E.A.1    Gross, D.S.2
  • 64
    • 22544461653 scopus 로고    scopus 로고
    • Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1
    • Shahbazian MD, Zhang K, Grunstein M. 2005. Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1. Mol Cell 19: 271-277.
    • (2005) Mol Cell , vol.19 , pp. 271-277
    • Shahbazian, M.D.1    Zhang, K.2    Grunstein, M.3
  • 65
    • 13744259076 scopus 로고    scopus 로고
    • Characterization of the grappa gene, the Drosophila histone H3 lysine 79 methyltransferase
    • Shanower GA, Muller M, Blanton JL, Honti V, Gyurkovics H, Schedl P. 2005. Characterization of the grappa gene, the Drosophila histone H3 lysine 79 methyltransferase. Genetics 169: 173-184.
    • (2005) Genetics , vol.169 , pp. 173-184
    • Shanower, G.A.1    Muller, M.2    Blanton, J.L.3    Honti, V.4    Gyurkovics, H.5    Schedl, P.6
  • 66
    • 33748698658 scopus 로고    scopus 로고
    • SAS-mediated acetylation of histone H4 Lys 16 is required for H2A.Z incorporation at subtelomeric regions in Saccharomyces cerevisiae
    • Shia WJ, Li B, Workman JL. 2006. SAS-mediated acetylation of histone H4 Lys 16 is required for H2A.Z incorporation at subtelomeric regions in Saccharomyces cerevisiae. Genes Dev 20: 2507-2512.
    • (2006) Genes Dev , vol.20 , pp. 2507-2512
    • Shia, W.J.1    Li, B.2    Workman, J.L.3
  • 67
    • 69249229528 scopus 로고    scopus 로고
    • Telomere length regulation: Coupling DNA end processing to feedback regulation of telomerase
    • Shore D, Bianchi A. 2009. Telomere length regulation: Coupling DNA end processing to feedback regulation of telomerase. EMBO J 28: 2309-2322.
    • (2009) EMBO J , vol.28 , pp. 2309-2322
    • Shore, D.1    Bianchi, A.2
  • 70
    • 77954091620 scopus 로고    scopus 로고
    • Genome-wide mapping of histone modifications and mass spectrometry reveal H4 acetylation bias and H3K36 methylation at gene promoters in fission yeast
    • Sinha I, Buchanan L, Ronnerblad M, Bonilla C, Durand-Dubief M, Shevchenko A, Grunstein M, Stewart AF, Ekwall K. 2010. Genome-wide mapping of histone modifications and mass spectrometry reveal H4 acetylation bias and H3K36 methylation at gene promoters in fission yeast. Epigenomics 2: 377-393.
    • (2010) Epigenomics , vol.2 , pp. 377-393
    • Sinha, I.1    Buchanan, L.2    Ronnerblad, M.3    Bonilla, C.4    Durand-Dubief, M.5    Shevchenko, A.6    Grunstein, M.7    Stewart, A.F.8    Ekwall, K.9
  • 72
    • 69449084972 scopus 로고    scopus 로고
    • Histone H3 N-terminus regulates higher order structure of yeast heterochromatin
    • Sperling AS, Grunstein M. 2009. Histone H3 N-terminus regulates higher order structure of yeast heterochromatin. Proc Natl Acad Sci 106: 13153-13159.
    • (2009) Proc Natl Acad Sci , vol.106 , pp. 13153-13159
    • Sperling, A.S.1    Grunstein, M.2
  • 73
    • 0031194492 scopus 로고    scopus 로고
    • Analysis of transcription factor-mediated remodeling of nucleosomal arrays in a purified system
    • Steger DJ, Owen-Hughes T, John S, Workman JL. 1997. Analysis of transcription factor-mediated remodeling of nucleosomal arrays in a purified system. Methods 12: 276-285.
    • (1997) Methods , vol.12 , pp. 276-285
    • Steger, D.J.1    Owen-Hughes, T.2    John, S.3    Workman, J.L.4
  • 74
    • 0031027431 scopus 로고    scopus 로고
    • SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast
    • Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M. 1997. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev 11: 83-93.
    • (1997) Genes Dev , vol.11 , pp. 83-93
    • Strahl-Bolsinger, S.1    Hecht, A.2    Luo, K.3    Grunstein, M.4
  • 75
    • 0034839973 scopus 로고    scopus 로고
    • Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin
    • Suka N, Suka Y, Carmen AA, Wu J, Grunstein M. 2001. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol Cell 8: 473-479.
    • (2001) Mol Cell , vol.8 , pp. 473-479
    • Suka, N.1    Suka, Y.2    Carmen, A.A.3    Wu, J.4    Grunstein, M.5
  • 76
    • 0036842129 scopus 로고    scopus 로고
    • Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine 16 and spreading of heterochromatin
    • Suka N, Luo K, Grunstein M. 2002. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine 16 and spreading of heterochromatin. Nat Genet 32: 378-383.
    • (2002) Nat Genet , vol.32 , pp. 378-383
    • Suka, N.1    Luo, K.2    Grunstein, M.3
  • 78
    • 3543038804 scopus 로고    scopus 로고
    • Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions
    • Tanny JC, Kirkpatrick DS, Gerber SA, Gygi SP, Moazed D. 2004. Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions. Mol Cell Biol 24: 6931-6946.
    • (2004) Mol Cell Biol , vol.24 , pp. 6931-6946
    • Tanny, J.C.1    Kirkpatrick, D.S.2    Gerber, S.A.3    Gygi, S.P.4    Moazed, D.5
  • 79
    • 0029828735 scopus 로고    scopus 로고
    • Biochemical mechanism of transcriptional activation by GAL4-VP16
    • Tantin D, Chi T, Hori R, Pyo S, Carey M. 1996. Biochemical mechanism of transcriptional activation by GAL4-VP16. Methods Enzymol 274: 133-149.
    • (1996) Methods Enzymol , vol.274 , pp. 133-149
    • Tantin, D.1    Chi, T.2    Hori, R.3    Pyo, S.4    Carey, M.5
  • 80
    • 34247842881 scopus 로고    scopus 로고
    • Histone H3 lysine 36 methylation antagonizes silencing in Saccharomyces cerevisiae independently of the Rpd3S histone deacetylase complex
    • Tompa R, Madhani HD. 2007. Histone H3 lysine 36 methylation antagonizes silencing in Saccharomyces cerevisiae independently of the Rpd3S histone deacetylase complex. Genetics 175: 585-593.
    • (2007) Genetics , vol.175 , pp. 585-593
    • Tompa, R.1    Madhani, H.D.2
  • 81
    • 0037077178 scopus 로고    scopus 로고
    • Dot1p modulates silencing in yeast by methylation of the nucleosome core
    • van Leeuwen F, Gafken PR, Gottschling DE. 2002. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109: 745-756.
    • (2002) Cell , vol.109 , pp. 745-756
    • van Leeuwen, F.1    Gafken, P.R.2    Gottschling, D.E.3
  • 82
    • 68949190829 scopus 로고    scopus 로고
    • Multiple histone modifications in euchromatin promote heterochromatin formation by redundant mechanisms in Saccharomyces cerevisiae
    • Verzijlbergen KF, Faber AW, Stulemeijer IJ, van Leeuwen F. 2009. Multiple histone modifications in euchromatin promote heterochromatin formation by redundant mechanisms in Saccharomyces cerevisiae. BMC Mol Biol 10: 76. doi: 10.1186/1471-2199-10-76
    • (2009) BMC Mol Biol , vol.10 , pp. 76
    • Verzijlbergen, K.F.1    Faber, A.W.2    Stulemeijer, I.J.3    van Leeuwen, F.4
  • 83
    • 33745967090 scopus 로고    scopus 로고
    • Single-cell observations reveal intermediate transcriptional silencing states
    • Xu EY, Zawadzki KA, Broach JR. 2006. Single-cell observations reveal intermediate transcriptional silencing states. Mol Cell 23: 219-229.
    • (2006) Mol Cell , vol.23 , pp. 219-229
    • Xu, E.Y.1    Zawadzki, K.A.2    Broach, J.R.3
  • 84
    • 34748909429 scopus 로고    scopus 로고
    • Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast
    • Xu F, Zhang Q, Zhang K, Xie W, Grunstein M. 2007. Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast. Mol Cell 27: 890-900.
    • (2007) Mol Cell , vol.27 , pp. 890-900
    • Xu, F.1    Zhang, Q.2    Zhang, K.3    Xie, W.4    Grunstein, M.5
  • 85
    • 48449102453 scopus 로고    scopus 로고
    • Insights into the impact of histone acetylation and methylation on Sir protein recruitment, spreading, and silencing in Saccharomyces cerevisiae
    • Yang B, Britton J, Kirchmaier AL. 2008. Insights into the impact of histone acetylation and methylation on Sir protein recruitment, spreading, and silencing in Saccharomyces cerevisiae. J Mol Biol 381: 826-844.
    • (2008) J Mol Biol , vol.381 , pp. 826-844
    • Yang, B.1    Britton, J.2    Kirchmaier, A.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.