메뉴 건너뛰기




Volumn 86, Issue 3, 2012, Pages 369-389

Local equivalences of distances between clusterings - A geometric perspective

Author keywords

2 divergence; Clustering; Comparing partitions; Convexity; Misclassification error; Rand index

Indexed keywords

CLUSTER VALIDATION; CLUSTERING; CLUSTERINGS; CONVEXITY; DATA CLUSTERING; DETERMINING THE NUMBER OF CLUSTERS; MISCLASSIFICATION ERROR; PROBABILITY THEORY; RAND INDEX; THEORETICAL STUDY; UPPER AND LOWER BOUNDS;

EID: 84868302138     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-011-5267-2     Document Type: Article
Times cited : (36)

References (18)
  • 1
    • 33749317042 scopus 로고    scopus 로고
    • Learning spectral clustering, with application to speech separation
    • Bach, F., & Jordan, M. I. (2006). Learning spectral clustering with applications to speech separation. Journal of Machine Learning Research, 7, 1963-2001. (Pubitemid 44497457)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1963-2001
    • Bach, F.R.1    Jordan, M.I.2
  • 3
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • Candès, E. J., & Tao, T. (2005). The Dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics, 35, 2313-2351.
    • (2005) Annals of Statistics , vol.35 , pp. 2313-2351
    • Candès, E.J.1    Tao, T.2
  • 4
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 33749236636 scopus 로고    scopus 로고
    • The uniqueness of a good optimum for K-means
    • A. Moore &W. Cohen (Eds.). Princeton: International Machine Learning Society
    • Meilǎ, M. (2006). The uniqueness of a good optimum for K-means. In A. Moore &W. Cohen (Eds.), Proceedings of the international machine learning conference (ICML) (pp. 625-632). Princeton: International Machine Learning Society.
    • (2006) Proceedings of the International Machine Learning Conference (ICML) , pp. 625-632
    • Meilǎ, M.1
  • 11
    • 33947156744 scopus 로고    scopus 로고
    • Comparing clusterings - An information based distance
    • Meilǎ, M. (2007). Comparing clusterings - an information based distance. Journal of Multivariate Analysis, 98(5), 873-895.
    • (2007) Journal of Multivariate Analysis , vol.98 , Issue.5 , pp. 873-895
    • Meilǎ, M.1
  • 15
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846-850.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.