메뉴 건너뛰기




Volumn 44, Issue 12, 2012, Pages 1447-1462

Teaching-learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems

Author keywords

constrained benchmark functions; real parameter optimization; teaching learning based optimization; unconstrained benchmark functions

Indexed keywords

BENCHMARK FUNCTIONS; CONSTRAINED OPTIMIZATION PROBLEMS; CONSTRAINED REAL-PARAMETER OPTIMIZATION; CONSTRAINT-HANDLING TECHNIQUES; FEASIBLE SOLUTION; OPTIMIZATION ALGORITHMS; REAL-PARAMETER OPTIMIZATION; SELF-ADAPTIVE; STOCHASTIC RANKING; TEACHING-LEARNING-BASED OPTIMIZATIONS;

EID: 84868299435     PISSN: 0305215X     EISSN: 10290273     Source Type: Journal    
DOI: 10.1080/0305215X.2011.652103     Document Type: Article
Times cited : (317)

References (34)
  • 1
    • 78049261422 scopus 로고    scopus 로고
    • Grenade explosion method - A novel tool for optimization of multimodal functions
    • Ahrari, A.A. and Atai, A., 2010. Grenade explosion method - a novel tool for optimization of multimodal functions. Applied Soft Computing, 10, 1132-1140.
    • (2010) Applied Soft Computing , vol.10 , pp. 1132-1140
    • Ahrari, A.A.1    Atai, A.2
  • 2
    • 78650895275 scopus 로고    scopus 로고
    • A modified artificial bee colony algorithm for real-parameter optimization
    • in press, doi:10.016/j.ins.2010.07.015
    • Akay, B. and Karaboga, D., 2010.A modified artificial bee colony algorithm for real-parameter optimization. Information Sciences (in press), doi:10.016/j.ins.2010.07.015.
    • (2010) Information Sciences
    • Akay, B.1    Karaboga, D.2
  • 3
    • 27144512834 scopus 로고    scopus 로고
    • A restart CMA evolution strategy with increasing population size
    • 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings
    • Auger, A. and Hansen, N., 2005.ArestartCMAevolution strategy with increasing population size. In: 2005 IEEE congress on evolutionary computation, 2-4 September Edinburgh, Vol. 2. Piscataway, NJ: IEEE Press, 1769-1776. (Pubitemid 41496063)
    • (2005) 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings , vol.2 , pp. 1769-1776
    • Auger, A.1    Hansen, N.2
  • 5
    • 84555193625 scopus 로고    scopus 로고
    • Real-parameter evolutionary multimodal optimization - A survey of the state-of the-art
    • Das, S., et al., 2011. Real-parameter evolutionary multimodal optimization - a survey of the state-of-the-art. Swarm and Evolutionary Computation, 1, 71-88.
    • (2011) Swarm and Evolutionary Computation , vol.1 , pp. 71-88
    • Das, S.1
  • 6
    • 0033729054 scopus 로고    scopus 로고
    • An efficient constraint handling method for genetic algorithms
    • Deb, K., 2000. An efficient constraint handling method for genetic algorithms. Computer Methods, Applied Mechanics and Engineering 186, 311-338.
    • (2000) Computer Methods, Applied Mechanics and Engineering , vol.186 , pp. 311-338
    • Deb, K.1
  • 8
    • 0038363680 scopus 로고    scopus 로고
    • Optimization of water distribution network design using the shuffled frog leaping algorithm
    • DOI 10.1061/(ASCE)0733-9496(2003)129:3(210)
    • Eusuff, M. and Lansey, E., 2003. Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management, 129, 210-225. (Pubitemid 36562716)
    • (2003) Journal of Water Resources Planning and Management , vol.129 , Issue.3 , pp. 210-225
    • Eusuff, M.M.1    Lansey, K.E.2
  • 9
    • 46149127936 scopus 로고
    • The immune system, adaptation and machine learning
    • Farmer, J.D., Packard, N., and Perelson, A., 1986. The immune system, adaptation and machine learning. Physica D, 22, 187-204.
    • (1986) Physica D , vol.22 , pp. 187-204
    • Farmer, J.D.1    Packard, N.2    Perelson, A.3
  • 10
    • 0034974417 scopus 로고    scopus 로고
    • Anewheuristic optimization algorithm: Harmony search
    • Geem, Z.W., Kim, J.H., and Loganathan, G.V., 2001.Anewheuristic optimization algorithm: harmony search. Simulation, 76, 60-65.
    • (2001) Simulation , vol.76 , pp. 60-65
    • Geem, Z.W.1    Kim, J.H.2    Loganathan, G.V.3
  • 15
    • 27144442023 scopus 로고    scopus 로고
    • Dynamic multi-swarm particle swarm optimizer with local search
    • 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings
    • Liang, J.J. and Suganthan, P.N., 2005. Dynamic multi-swarm particle swarm optimizer with local search. In: 2005 IEEE congress on evolutionary computation, 2-4 September Edinburgh, Vol. 1. Piscataway, NJ: IEEE Press, 522-528. (Pubitemid 41495897)
    • (2005) 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings , vol.1 , pp. 522-528
    • Liang, J.J.1    Suganthan, P.N.2
  • 18
    • 14844307657 scopus 로고    scopus 로고
    • A simple multimembered evolution strategy to solve constrained optimization problems
    • DOI 10.1109/TEVC.2004.836819
    • Mezura-Montes, E. and Coello, C.A.C., 2005. A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation, 9, 1-17. (Pubitemid 40337296)
    • (2005) IEEE Transactions on Evolutionary Computation , vol.9 , Issue.1 , pp. 1-17
    • Mezura-Montes, E.1    Coello Coello, C.A.2
  • 19
    • 0036608987 scopus 로고    scopus 로고
    • Biomimicry of bacterial foraging for distributed optimization and control
    • DOI 10.1109/MCS.2002.1004010
    • Passino, K.M., 2002. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems Magazine, 22, 52-67. (Pubitemid 34711477)
    • (2002) IEEE Control Systems Magazine , vol.22 , Issue.3 , pp. 52-67
    • Passino, K.M.1
  • 20
    • 27144475732 scopus 로고    scopus 로고
    • Self-adaptive differential evolution algorithm for numerical optimization
    • 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings
    • Qin, A.K. and Suganthan, P.N., 2005. Self-adaptive differential evolution algorithm for numerical optimization. In: 2005 IEEE congress on evolutionary computation, 2-4 September Edinburgh, Vol. 2. Piscataway, NJ: IEEE Press, 1785- 1791. (Pubitemid 41496065)
    • (2005) 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings , vol.2 , pp. 1785-1791
    • Qin, A.K.1    Suganthan, P.N.2
  • 21
    • 78951475022 scopus 로고    scopus 로고
    • Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems
    • Rao, R.V., Savsani, V.J., andVakharia, D.P., 2011. Teaching-learning- based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43, 303-315.
    • (2011) Computer-Aided Design , vol.43 , pp. 303-315
    • Rao, R.V.1    Savsani, V.J.2    Vakharia, D.P.3
  • 22
    • 80055062464 scopus 로고    scopus 로고
    • Teaching-learning-based optimization: An optimization method for continuous non-linear large scale problems
    • Rao, R.V., Savsani, V.J., and Vakharia, D.P., 2012. Teaching-learning- based optimization: an optimization method for continuous non-linear large scale problems. Information Sciences, 183, 1-15.
    • (2012) Information Sciences , vol.183 , pp. 1-15
    • Rao, R.V.1    Savsani, V.J.2    Vakharia, D.P.3
  • 28
    • 0142000477 scopus 로고    scopus 로고
    • Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces
    • Storn, R. and Price, K., 1997. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341-359. (Pubitemid 127502202)
    • (1997) Journal of Global Optimization , vol.11 , Issue.4 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 30
    • 34547269606 scopus 로고    scopus 로고
    • Constrained optimization by the ε constrained differential evolution with gradient-based mutation and feasible elites
    • 1688283, 2006 IEEE Congress on Evolutionary Computation, CEC 2006
    • Sugan Takahama, T. and Sakai, S., 2006. Constrained optimization by the constrained differential evolution with gradient-based mutation and feasible elites. In: Proceedings of IEEE congress on evolutionary computation, 16-21 JulyVancouver. Piscataway, NJ: IEEE Press, 1-8. (Pubitemid 47130472)
    • (2006) 2006 IEEE Congress on Evolutionary Computation, CEC 2006 , pp. 1-8
    • Takahama, T.1    Sakai, S.2
  • 31
    • 34547354192 scopus 로고    scopus 로고
    • A self adaptive penalty function based algorithm for constrained optimization
    • 1688315, 2006 IEEE Congress on Evolutionary Computation, CEC 2006
    • Tessema, B. and Yen, G.G., 2006. A self-adaptive penalty function based algorithm for constrained optimization. In: Proceedings of IEEE congress on evolutionary computation, 16-21 July Vancouver. Piscataway, NJ: IEEE Press, 246-253. (Pubitemid 47130504)
    • (2006) 2006 IEEE Congress on Evolutionary Computation, CEC 2006 , pp. 246-253
    • Tessema, B.1    Yen, G.G.2
  • 32
  • 33
    • 40249108903 scopus 로고    scopus 로고
    • An adaptive tradeoff model for constrained evolutionary optimization
    • DOI 10.1109/TEVC.2007.902851
    • Wang, Y., et al., 2008. An adaptive tradeoff model for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation, 12, 80-92. (Pubitemid 351330333)
    • (2008) IEEE Transactions on Evolutionary Computation , vol.12 , Issue.1 , pp. 80-92
    • Wang, Y.1    Cai, Z.2    Zhou, Y.3    Zeng, W.4
  • 34
    • 79960530761 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A survey of the state-of-The-art
    • Zhou, A., et al., 2011. Multiobjective evolutionary algorithms: a survey of the state-of-the-art. Swarm and Evolutionary Computation, 1, 32-49.
    • (2011) Swarm and Evolutionary Computation , vol.1 , pp. 32-49
    • Zhou, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.