메뉴 건너뛰기




Volumn , Issue , 2011, Pages 896-907

Sequential minimal optimization in adaptive-bandwidth convex clustering

Author keywords

[No Author keywords available]

Indexed keywords

BANDWIDTH; CLUSTER COMPUTING; CONVEX OPTIMIZATION; DATA MINING; IMAGE SEGMENTATION; MAXIMUM PRINCIPLE; MIXTURES; NEWTON-RAPHSON METHOD; SPACE DIVISION MULTIPLE ACCESS;

EID: 84868282055     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972818.77     Document Type: Conference Paper
Times cited : (5)

References (31)
  • 1
    • 0001110699 scopus 로고
    • On bandwidth variation in kernel estimatesa square root law
    • I. S. Abramson. On bandwidth variation in kernel estimatesa square root law. Annals of Statistics, 10(4):1217-1223, 1982.
    • (1982) Annals of Statistics , vol.10 , Issue.4 , pp. 1217-1223
    • Abramson, I.S.1
  • 3
    • 0000708831 scopus 로고
    • Mixtures of dirichlet processes with applications to Bayesian nonparametric problems
    • C. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Annals of Statistics, 2:1152-1174, 1974.
    • (1974) Annals of Statistics , vol.2 , pp. 1152-1174
    • Antoniak, C.1
  • 4
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for dirichlet process mixtures
    • D. M. Blei and M. I. Jordan. Variational inference for Dirichlet process mixtures. Bayesian Analysis, 1(1):121-144, 2006.
    • (2006) Bayesian Analysis , vol.1 , Issue.1 , pp. 121-144
    • Blei, D.M.1    Jordan, M.I.2
  • 9
    • 12244256379 scopus 로고    scopus 로고
    • Kernel k-means, spectral clustering and normalized cuts
    • I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means, spectral clustering and normalized cuts. In 10th ACM KDD Conference, pages 551-556, 2004.
    • (2004) 10th ACM KDD Conference , pp. 551-556
    • Dhillon, I.S.1    Guan, Y.2    Kulis, B.3
  • 10
    • 0001787029 scopus 로고
    • Bayesian density estimation by mixtures of normal distributions
    • T. S. Ferguson. Bayesian density estimation by mixtures of normal distributions. In Recent Advances in Statistics, pages 287-302, 1983.
    • (1983) Recent Advances in Statistics , pp. 287-302
    • Ferguson, T.S.1
  • 11
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency versus interpretability of classifications
    • E. W. Forgy. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics, 21:768-769, 1965.
    • (1965) Biometrics , vol.21 , pp. 768-769
    • Forgy, E.W.1
  • 15
    • 85161965460 scopus 로고    scopus 로고
    • Convex clustering with exemplar-based models
    • J. Platt, D. Koller, Y. Singer, and S. Roweis, editors MIT Press, Cambridge, MA
    • D. Lashkari and P. Golland. Convex clustering with exemplar-based models. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 825-832. MIT Press, Cambridge, MA, 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 825-832
    • Lashkari, D.1    Golland, P.2
  • 17
    • 40249114903 scopus 로고    scopus 로고
    • Retrospective MCMC for dirichlet process hierarchical models
    • O. Papaspiliopoulos and G. O. Roberts. Retrospective MCMC for Dirichlet process hierarchical models. Biometrika, 95:169-186, 2008.
    • (2008) Biometrika , vol.95 , pp. 169-186
    • Papaspiliopoulos, O.1    Roberts, G.O.2
  • 18
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, MA, USA
    • J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in kernel methods: support vector learning, pages 185-208. MIT Press, Cambridge, MA, USA, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 19
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood, and the EM algorithm
    • R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood, and the EM algorithm. SIAM Review, 26:195-239, 1984.
    • (1984) SIAM Review , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 20
    • 0032202775 scopus 로고    scopus 로고
    • Deterministic annealing for clustering, compression, classification, regression, and related optimization problems
    • K. Rose. Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. In Proceedings of the IEEE, volume 86, pages 2210-2239, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , pp. 2210-2239
    • Rose, K.1
  • 22
    • 79951781914 scopus 로고    scopus 로고
    • Exploring the use of variable bandwidth kernel density estimators
    • I. H. Salgado-Ugarte and M. A. Pérez-Hernández. Exploring the use of variable bandwidth kernel density estimators. Stata Journal, 3(2):133-147, 2003.
    • (2003) Stata Journal , vol.3 , Issue.2 , pp. 133-147
    • Salgado-Ugarte, I.H.1    Pérez-Hernández, M.A.2
  • 25
    • 0032029288 scopus 로고    scopus 로고
    • Deterministic annealing EM algorithm
    • N. Ueda and R. Nakano. Deterministic annealing EM algorithm. Neural Networks, 11(2):271-282, 1998.
    • (1998) Neural Networks , vol.11 , Issue.2 , pp. 271-282
    • Ueda, N.1    Nakano, R.2
  • 28
    • 2342533082 scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • L. Xu and M. I. Jordan. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 8:129-151, 1995.
    • (1995) Neural Computation , vol.8 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 30
    • 0014976008 scopus 로고
    • Graph-theoretical methods for detecting and describing gestalt clusters
    • C. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers, C-20(1):68-86, 1971.
    • (1971) IEEE Transactions on Computers , vol.C-20 , Issue.1 , pp. 68-86
    • Zahn, C.1
  • 31
    • 84898995558 scopus 로고    scopus 로고
    • Self-tuning spectral clustering
    • L. K. Saul, Y. Weiss, and L. Bottou, editors MIT Press, Cambridge, MA
    • L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 1601-1608. MIT Press, Cambridge, MA, 2005.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 1601-1608
    • Zelnik-Manor, L.1    Perona, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.