-
1
-
-
0020002987
-
Nonlinear oscillations and boundary-value problems for Hamiltonian systems
-
F. Clarke and I. Ekeland. Nonlinear oscillations and boundary-value problems for Hamiltonian systems, Arch. Rat. Mech. Anal., 78, 315-333, 1982.
-
(1982)
Arch. Rat. Mech. Anal
, vol.78
, pp. 315-333
-
-
Clarke, F.1
Ekeland, I.2
-
2
-
-
84976855597
-
Solution of the equation AX +XB = C
-
R. H. Bartels and G. W Stewart. Solution of the equation AX +XB = C, Comm. ACM, 15, 820-826, 1972.
-
(1972)
Comm. ACM
, vol.15
, pp. 820-826
-
-
Bartels, R.H.1
Stewart, G.W.2
-
3
-
-
0003430109
-
-
Springer-Verlag, Berlin
-
S. Bittanti, A. J. Laub, and J. C. Willems (eds.). The Riccati Equation, Communications and Control Engineering Series, Springer-Verlag, Berlin, 1991.
-
(1991)
The Riccati Equation, Communications and Control Engineering Series
-
-
Bittanti, S.1
Laub, A.J.2
Willems, J.C.3
-
5
-
-
0004236492
-
-
third edition), The John Hopkins University Press, Baltimore and London
-
G. H. Golub and C. F. van Loan. Matrix Computations (third edition), The John Hopkins University Press, Baltimore and London, 1996.
-
(1996)
Matrix Computations
-
-
Golub, G.H.1
Van Loan, C.F.2
-
6
-
-
0018721357
-
A Hessenberg-Schur method for the problem AX−XB = C
-
G. H. Golub, S. Nash, and C. F. van Loan. A Hessenberg-Schur method for the problem AX −XB = C, IEEE Trans. Automat. Control., AC-24, 909-913, 1979.
-
(1979)
IEEE Trans. Automat. Control
, vol.24
, pp. 909-913
-
-
Golub, G.H.1
Nash, S.2
Van Loan, C.F.3
-
7
-
-
0001045175
-
Perturbation theory and backward error forAX − XB = C
-
N. J. Higham. Perturbation theory and backward error for AX − XB = C, BIT, 33, 124-136, 1993.
-
(1993)
BIT
, vol.33
, pp. 124-136
-
-
Higham, N.J.1
-
8
-
-
38249011246
-
Krylov subspace methods for the Sylvester equations
-
D. Y. Hu and L. Reichel. Krylov subspace methods for the Sylvester equations, Linear Algebra Appl., 172, 283-314, 1992.
-
(1992)
Linear Algebra Appl
, vol.172
, pp. 283-314
-
-
Hu, D.Y.1
Reichel, L.2
-
9
-
-
0000844938
-
On the numerical solution of AX − XB = C
-
V. Simoncini. On the numerical solution of AX − XB = C, BIT, 36, 182-198, 1996.
-
(1996)
BIT
, vol.36
, pp. 182-198
-
-
Simoncini, V.1
-
10
-
-
1542603280
-
Arnoldi-Riccati method for large eigenvalue problems
-
V. Simoncini and M. Sadkane. Arnoldi-Riccati method for large eigenvalue problems, BIT, 36, 579-594, 1996.
-
(1996)
BIT
, vol.36
, pp. 579-594
-
-
Simoncini, V.1
Sadkane, M.2
-
11
-
-
0030560293
-
A Jacobi-Davidson iteration method for linear eigenvalue problems
-
G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Applic., 17, 401-425, 1996.
-
(1996)
SIAM J. Matrix Anal. Applic
, vol.17
, pp. 401-425
-
-
Sleijpen, G.1
Van Der Vorst, H.A.2
-
12
-
-
0000875808
-
Controllability, observability and the solution of AX − XB = C
-
E. de Souza and S. P. Bhattacharyya. Controllability, observability and the solution of AX − XB = C, Linear Algebra Appl., 39, 167-188, 1981.
-
(1981)
Linear Algebra Appl
, vol.39
, pp. 167-188
-
-
De Souza, E.1
Bhattacharyya, S.P.2
-
14
-
-
0001162599
-
Error and perturbation bounds for subspaces associated with certain eigenvalue problems
-
G. W. Stewart. Error and perturbation bounds for subspaces associated with certain eigenvalue problems, SIAM Review, 15, 1973.
-
(1973)
SIAM Review
, pp. 15
-
-
Stewart, G.W.1
|