-
1
-
-
0038036726
-
All dicyclic groups of order at least twelve have symmetric sequencings
-
B.A. Anderson, All dicyclic groups of order at least twelve have symmetric sequencings, Contemp. Math. 111 (1990) 5-21.
-
(1990)
Contemp. Math.
, vol.111
, pp. 5-21
-
-
Anderson, B.A.1
-
2
-
-
0012067850
-
Some quasi-2-complete Latin squares
-
B.A. Anderson, Some quasi-2-complete Latin squares, Congr. Numer. 70 (1990) 65-79.
-
(1990)
Congr. Numer.
, vol.70
, pp. 65-79
-
-
Anderson, B.A.1
-
3
-
-
0012072182
-
A family of N°N Tuscan-2 squares with N + 1 composite
-
B.A. Anderson, A family of N°N Tuscan-2 squares with N + 1 composite, Ars Combin. 32 (1991) 33-55.
-
(1991)
Ars Combin.
, vol.32
, pp. 33-55
-
-
Anderson, B.A.1
-
4
-
-
33644688509
-
A product theorem for 2-sequencings
-
B.A. Anderson, A product theorem for 2-sequencings. Discrete Math. 87 (1991) 221-236.
-
(1991)
Discrete Math.
, vol.87
, pp. 221-236
-
-
Anderson, B.A.1
-
6
-
-
0001276723
-
Quasi-complete Latin squares: Construction and randomisation
-
R.A. Bailey, Quasi-complete Latin squares: construction and randomisation, J. Royal Statis. Soc. Ser. B 46 (1984) 323-334.
-
(1984)
J. Royal Statis. Soc. Ser. B
, vol.46
, pp. 323-334
-
-
Bailey, R.A.1
-
7
-
-
0003635545
-
-
McGraw-Hill, New York, 4th Edition (Wm C. Brown, 1991 & 1995)
-
D.M. Burton, Elementary Number Theory, McGraw-Hill, New York, 4th Edition, 1997 & 1998 (Wm C. Brown, 1991 & 1995).
-
(1997)
Elementary Number Theory
-
-
Burton, D.M.1
-
11
-
-
0007123932
-
Circuit designs and latin squares
-
A.D. Keedwell, Circuit designs and latin squares, Ars Combin. 17 (1984) 79-90.
-
(1984)
Ars Combin.
, vol.17
, pp. 79-90
-
-
Keedwell, A.D.1
-
13
-
-
84867989002
-
Choreographing designs
-
D.A. Preece, B.J. Vowden, R. Hughes Jones, C.A. Rodger, C.J. Vowden, Choreographing designs, Math. Sci. 20 (1995) 15-32.
-
(1995)
Math. Sci.
, vol.20
, pp. 15-32
-
-
Preece, D.A.1
Vowden, B.J.2
Hughes Jones, R.3
Rodger, C.A.4
Vowden, C.J.5
-
14
-
-
0033468964
-
Construction of sequentially counterbalanced designs formed from two latin squares
-
P. Prescott, Construction of sequentially counterbalanced designs formed from two latin squares, Utilitas Math. 55 (1999) 135-152.
-
(1999)
Utilitas Math
, vol.55
, pp. 135-152
-
-
Prescott, P.1
-
15
-
-
0033557254
-
Construction of uniform-balanced cross-over designs for any odd number of treatments
-
P. Prescott, Construction of uniform-balanced cross-over designs for any odd number of treatments, Statist. Med. 18 (1999) 265-272.
-
(1999)
Statist. Med.
, vol.18
, pp. 265-272
-
-
Prescott, P.1
-
16
-
-
84970602731
-
Experimental designs balanced for the estimation of residual eNects of treatments
-
E.J. Williams, Experimental designs balanced for the estimation of residual eNects of treatments, Austral. J. Sci. Res. Ser. A 2 (1949) 149-168.
-
(1949)
Austral. J. Sci. Res. Ser. A
, vol.2
, pp. 149-168
-
-
Williams, E.J.1
|