메뉴 건너뛰기




Volumn 120, Issue 1-3, 2002, Pages 141-157

On the Frame-Stewart algorithm for the multi-peg Tower of Hanoi problem

Author keywords

Dynamic programming; Frame Stewart algorithm; Multi peg Tower of Hanoi problem; Recursion

Indexed keywords


EID: 84867954004     PISSN: 0166218X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0166-218X(01)00287-6     Document Type: Article
Times cited : (31)

References (15)
  • 1
    • 77957690867 scopus 로고
    • Tower of Hanoi with more pegs
    • A. Brousseau Tower of Hanoi with more pegs J. Recreational Math. 8 1975 76 169 178
    • (1975) J. Recreational Math. , vol.8 , pp. 169-178
    • Brousseau, A.1
  • 2
    • 0000466297 scopus 로고
    • La Tour d'Hanoi, Jeu de calcul
    • N. Claus (= E. Lucas) La Tour d'Hanoi, Jeu de calcul Science et Nature 1 8 1884 127 128
    • (1884) Science et Nature , vol.1 , Issue.8 , pp. 127-128
    • Claus, N.1
  • 3
    • 77957692799 scopus 로고
    • On the Towers of Hanoi and generalized Towers of Hanoi problems
    • P. Cull, and E.F. Ecklund Jr. On the Towers of Hanoi and generalized Towers of Hanoi problems Congr. Numer. 35 1982 229 238
    • (1982) Congr. Numer. , vol.35 , pp. 229-238
    • Cull, P.1    Ecklund, Jr.E.F.2
  • 5
    • 9444294382 scopus 로고
    • Editorial note concerning advanced problem 3918
    • O. Dunkel Editorial note concerning advanced problem 3918 Amer. Math. Monthly 48 1941 219
    • (1941) Amer. Math. Monthly , vol.48 , pp. 219
    • Dunkel, O.1
  • 6
    • 3142706127 scopus 로고
    • Solution to advanced problem 3918
    • J.S. Frame Solution to advanced problem 3918 Amer. Math. Monthly 48 1941 216 217
    • (1941) Amer. Math. Monthly , vol.48 , pp. 216-217
    • Frame, J.S.1
  • 7
    • 0011389750 scopus 로고
    • An iterative algorithm for the Tower of Hanoi with four pegs
    • A.M. Hinz An iterative algorithm for the Tower of Hanoi with four pegs Computing 42 1989 133 140
    • (1989) Computing , vol.42 , pp. 133-140
    • Hinz, A.M.1
  • 8
    • 38249008370 scopus 로고
    • Shortest paths between regular states of the Tower of Hanoi
    • A.M. Hinz Shortest paths between regular states of the Tower of Hanoi Inform. Sci. 63 1992 173 181
    • (1992) Inform. Sci. , vol.63 , pp. 173-181
    • Hinz, A.M.1
  • 9
    • 3142694358 scopus 로고
    • The generalized p-peg Tower of Hanoi problem
    • A.A.K. Majumdar The generalized p-peg Tower of Hanoi problem Optimization 32 1995 175 183
    • (1995) Optimization , vol.32 , pp. 175-183
    • Majumdar, A.A.K.1
  • 10
    • 0007463042 scopus 로고
    • The towers and triangles of professor Claus (or, Pascal knows Hanoi)
    • D.G. Poole The towers and triangles of professor Claus (or, Pascal knows Hanoi) Math. Mag. 67 1994 323 344
    • (1994) Math. Mag. , vol.67 , pp. 323-344
    • Poole, D.G.1
  • 11
    • 33748372994 scopus 로고
    • The Tower of Brahma revisited
    • T. Roth The Tower of Brahma revisited J. Recreational Math. 7 1974 116 119
    • (1974) J. Recreational Math. , vol.7 , pp. 116-119
    • Roth, T.1
  • 12
    • 3142706127 scopus 로고
    • Solution to advanced problem 3918
    • B.M. Stewart Solution to advanced problem 3918 Amer. Math. Monthly 48 1941 217 219
    • (1941) Amer. Math. Monthly , vol.48 , pp. 217-219
    • Stewart, B.M.1
  • 13
    • 0347442142 scopus 로고
    • Variations on the Four-Post Tower of Hanoi Puzzle
    • P.K. Stockmeyer Variations on the four-post Tower of Hanoi puzzle Congr. Numer. 102 1994 3 12 (Pubitemid 126096237)
    • (1994) Congr. Numer. , Issue.102 , pp. 3-12
    • Stockmeyer, P.K.1
  • 15
    • 0012538704 scopus 로고
    • The Towers of Brahma and Hanoi revisited
    • D. Wood The Towers of Brahma and Hanoi revisited J. Recreational Math. 14 1981 82 17 24
    • (1981) J. Recreational Math. , vol.14 , pp. 17-24
    • Wood, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.