메뉴 건너뛰기




Volumn 99, Issue , 2013, Pages 65-75

Fuzzy Kohonen clustering networks for interval data

Author keywords

Fuzzy Kohonen clustering network; Interval data; Symbolic data analysis; Weighted distances

Indexed keywords

DATA SETS; EUCLIDEAN DISTANCE; FUZZY KOHONEN CLUSTERING NETWORKS; FUZZY MEMBERSHIP VALUES; INTERVAL DATA; LEARNING RATES; SELF-ORGANIZING FUZZY NEURAL NETWORK; SYMBOLIC DATA ANALYSIS; WEIGHTED DISTANCE;

EID: 84867890353     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.06.019     Document Type: Article
Times cited : (24)

References (48)
  • 5
    • 84948752989 scopus 로고    scopus 로고
    • Wiley-Interscience, E. Diday, M. Noirhomme-Fraiture (Eds.)
    • Symbolic Data Analysis and the SODAS Software 2008, Wiley-Interscience. E. Diday, M. Noirhomme-Fraiture (Eds.).
    • (2008) Symbolic Data Analysis and the SODAS Software
  • 6
    • 37949034947 scopus 로고    scopus 로고
    • An introduction to symbolic data analysis and the sodas software
    • Diday E., Esposito F. An introduction to symbolic data analysis and the sodas software. Intell. Data Anal. 2003, 7:583-601.
    • (2003) Intell. Data Anal. , vol.7 , pp. 583-601
    • Diday, E.1    Esposito, F.2
  • 7
    • 0041743064 scopus 로고    scopus 로고
    • From the statistics of data to the statistics of knowledge: symbolic data analysis
    • Billard L., Diday E. From the statistics of data to the statistics of knowledge: symbolic data analysis. J. Am. Stat. Assoc. 2003, 98:470-487.
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 470-487
    • Billard, L.1    Diday, E.2
  • 9
    • 0029359322 scopus 로고
    • Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity
    • Gowda K.C., Ravi T.V. Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity. Pattern Recognition 1995, 28:1277-1282.
    • (1995) Pattern Recognition , vol.28 , pp. 1277-1282
    • Gowda, K.C.1    Ravi, T.V.2
  • 10
    • 0029326165 scopus 로고
    • Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity
    • Gowda K., Ravi T.V. Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity. Pattern Recognition Lett. 1995, 16:647-652.
    • (1995) Pattern Recognition Lett. , vol.16 , pp. 647-652
    • Gowda, K.1    Ravi, T.V.2
  • 11
    • 0032154982 scopus 로고    scopus 로고
    • A monothetic clustering method
    • Chavent M. A monothetic clustering method. Pattern Recognition Lett. 1998, 19:989-996.
    • (1998) Pattern Recognition Lett. , vol.19 , pp. 989-996
    • Chavent, M.1
  • 13
    • 2942618322 scopus 로고    scopus 로고
    • Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns
    • Guru D.S., Kiranagi B.B., Nagabhushan P. Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns. Pattern Recognition Lett. 2004, 25:1203-1213.
    • (2004) Pattern Recognition Lett. , vol.25 , pp. 1203-1213
    • Guru, D.S.1    Kiranagi, B.B.2    Nagabhushan, P.3
  • 14
    • 84867864511 scopus 로고    scopus 로고
    • Symbolic Cluster Analysis, Springer-Verlag
    • E. Diday, P. Brito, Symbolic Cluster Analysis, Springer-Verlag, pp. 45-84.
    • Diday, E.1    Brito, P.2
  • 15
    • 0029415780 scopus 로고
    • A conceptual version of the k-means algorithm
    • Ralambondrainy H. A conceptual version of the k-means algorithm. Pattern Recognition Lett. 1995, 16:1147-1157.
    • (1995) Pattern Recognition Lett. , vol.16 , pp. 1147-1157
    • Ralambondrainy, H.1
  • 16
    • 84867862098 scopus 로고    scopus 로고
    • An Interactive Relocation Algorithm for Classifying Symbolic Data, Springer-Verlag, Berlin
    • A.D. Gordon, An Interactive Relocation Algorithm for Classifying Symbolic Data, Springer-Verlag, Berlin, pp. 17-23.
    • Gordon, A.D.1
  • 17
    • 84867892484 scopus 로고    scopus 로고
    • A dynamical clustering algorithm for symbolic data, in: 25th Annual Conference of the German Classification Society, Tutorial on Symbolic Data Analysis, Munich, Germany
    • V. Verde, F.A.T.D. Carvalho, Y. Lechevallier, A dynamical clustering algorithm for symbolic data, in: 25th Annual Conference of the German Classification Society, Tutorial on Symbolic Data Analysis, Munich, Germany, pp. 59-71.
    • Verde, V.1    Carvalho, F.A.T.D.2    Lechevallier, Y.3
  • 18
    • 75449088345 scopus 로고    scopus 로고
    • Clustering algorithms and Kohonen maps for symbolic data
    • Bock H.-H. Clustering algorithms and Kohonen maps for symbolic data. J. Jpn. Soc. Comput. Stat. 2003, 15:217-229.
    • (2003) J. Jpn. Soc. Comput. Stat. , vol.15 , pp. 217-229
    • Bock, H.-H.1
  • 22
    • 62349117695 scopus 로고    scopus 로고
    • Partitional clustering algorithms for symbolic interval data based on single adaptive distances
    • de Carvalho F.A.T., Lechevalliere Y. Partitional clustering algorithms for symbolic interval data based on single adaptive distances. Pattern Recognition 2009, 42:1223-1236.
    • (2009) Pattern Recognition , vol.42 , pp. 1223-1236
    • de Carvalho, F.A.T.1    Lechevalliere, Y.2
  • 25
    • 0346778567 scopus 로고    scopus 로고
    • Fuzzy clustering algorithms for mixed feature variables
    • Yang M.-S., Hwang P.-Y., Chen D.-H. Fuzzy clustering algorithms for mixed feature variables. Fuzzy Sets Syst. 2004, 141:301-317.
    • (2004) Fuzzy Sets Syst. , vol.141 , pp. 301-317
    • Yang, M.-S.1    Hwang, P.-Y.2    Chen, D.-H.3
  • 26
    • 33845495645 scopus 로고    scopus 로고
    • Fuzzy c-means clustering methods for symbolic interval data
    • de Carvalho F.A.T. Fuzzy c-means clustering methods for symbolic interval data. Pattern Recognition Lett. 2007, 28:423-437.
    • (2007) Pattern Recognition Lett. , vol.28 , pp. 423-437
    • de Carvalho, F.A.T.1
  • 27
    • 77957887314 scopus 로고    scopus 로고
    • Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances
    • de Carvalho F.A.T., Tenório C.P. Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances. Fuzzy Sets Syst. 2010, 161:2978-2999.
    • (2010) Fuzzy Sets Syst. , vol.161 , pp. 2978-2999
    • de Carvalho, F.A.T.1    Tenório, C.P.2
  • 28
  • 30
    • 0026973258 scopus 로고
    • Fuzzy Kohonen clustering networks, in: Proceedings of the First IEEE Conference on Fuzzy Systems, San Diego, USA
    • J.C. Bezdek, E.C.-K. Tsao, N.R. Pal, Fuzzy Kohonen clustering networks, in: Proceedings of the First IEEE Conference on Fuzzy Systems, San Diego, USA, 1992.
    • (1992)
    • Bezdek, J.C.1    Tsao, E.C.-K.2    Pal, N.R.3
  • 32
    • 0022151730 scopus 로고
    • Incorporating fuzzy membership function into the perceptron algorithm
    • Keller J.M., Hunt D.J. Incorporating fuzzy membership function into the perceptron algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 1985, 7:693-699.
    • (1985) IEEE Trans. Pattern Anal. Mach. Intell. , vol.7 , pp. 693-699
    • Keller, J.M.1    Hunt, D.J.2
  • 33
    • 84972959209 scopus 로고
    • Parallel self-organizing feature maps for unsupervised pattern recognition
    • Huntsberger T.L., Ajjimarangsee P. Parallel self-organizing feature maps for unsupervised pattern recognition. Int. J. Gen. Syst. 1990, 16:357-372.
    • (1990) Int. J. Gen. Syst. , vol.16 , pp. 357-372
    • Huntsberger, T.L.1    Ajjimarangsee, P.2
  • 36
    • 0017678272 scopus 로고
    • Classification automatique avec distances adaptatives, RAIRO, Inf. 11
    • E. Diday, G. Govaert, Classification automatique avec distances adaptatives, RAIRO, Inf. 11 (1977) 329-349.
    • (1977) , pp. 329-349
    • Diday, E.1    Govaert, G.2
  • 37
    • 0018057468 scopus 로고    scopus 로고
    • Fuzzy clustering with a fuzzy covariance matrix, in: 17th Symposium on Adaptive Processes
    • D.E. Gustafson, W.C. Kessel, Fuzzy clustering with a fuzzy covariance matrix, in: 17th Symposium on Adaptive Processes, vol. 17, pp. 761-766.
    • , vol.17 , pp. 761-766
    • Gustafson, D.E.1    Kessel, W.C.2
  • 38
    • 33748922244 scopus 로고    scopus 로고
    • Partitional fuzzy clustering methods based on adaptive quadratic distances
    • de Carvalho F.A.T., Tenorio C.P., Junior N.L.C. Partitional fuzzy clustering methods based on adaptive quadratic distances. Fuzzy Sets Syst. 2006, 157:2833-2857.
    • (2006) Fuzzy Sets Syst. , vol.157 , pp. 2833-2857
    • de Carvalho, F.A.T.1    Tenorio, C.P.2    Junior, N.L.C.3
  • 39
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer B., Villmann T. Generalized relevance learning vector quantization. Neural Networks 2002, 15:1059-1068.
    • (2002) Neural Networks , vol.15 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 40
    • 77950297930 scopus 로고    scopus 로고
    • Local matrix learning in clustering and applications for manifold visualization
    • Arnonkijpanich B., Hasenfuss A., Hammer B. Local matrix learning in clustering and applications for manifold visualization. Neural Networks 2010, 23:476-486.
    • (2010) Neural Networks , vol.23 , pp. 476-486
    • Arnonkijpanich, B.1    Hasenfuss, A.2    Hammer, B.3
  • 46
    • 33750164227 scopus 로고    scopus 로고
    • Dynamic clustering for interval data based on l2 distance
    • Carvalho F.D., Brito P., Bock H.-H. Dynamic clustering for interval data based on l2 distance. Comput. Stat. 2006, 21:231-250.
    • (2006) Comput. Stat. , vol.21 , pp. 231-250
    • Carvalho, F.D.1    Brito, P.2    Bock, H.-H.3
  • 48
    • 0030636546 scopus 로고    scopus 로고
    • Mercury in the food web: accumulation and transfer mechanisms
    • Bobou A., Ribeyre F. Mercury in the food web: accumulation and transfer mechanisms. Met. Ions Biol. Syst. 1998, 289-319.
    • (1998) Met. Ions Biol. Syst. , pp. 289-319
    • Bobou, A.1    Ribeyre, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.