-
1
-
-
0014013196
-
Chemotaxis in bacteria
-
Adler J. Chemotaxis in bacteria. Science 1966, 153:708.
-
(1966)
Science
, vol.153
, pp. 708
-
-
Adler, J.1
-
2
-
-
0014692237
-
Chemoreceptors in bacteria
-
Adler J. Chemoreceptors in bacteria. Science 1969, 166:1588.
-
(1969)
Science
, vol.166
, pp. 1588
-
-
Adler, J.1
-
4
-
-
0002964937
-
Avascular growth, angiogenesis and vascular growth in solid tumors: the mathematical modeling of the stages of tumor development
-
Chaplain M.A.J. Avascular growth, angiogenesis and vascular growth in solid tumors: the mathematical modeling of the stages of tumor development. Math. Comput. Modeling 1996, 23:47.
-
(1996)
Math. Comput. Modeling
, vol.23
, pp. 47
-
-
Chaplain, M.A.J.1
-
6
-
-
26844499863
-
Global solutions of some chemotaxis and angiogenesis system in high space dimensions
-
Corrias L., Perthame B., Zaag H. Global solutions of some chemotaxis and angiogenesis system in high space dimensions. Milan J. Math. 2004, 72:1.
-
(2004)
Milan J. Math.
, vol.72
, pp. 1
-
-
Corrias, L.1
Perthame, B.2
Zaag, H.3
-
7
-
-
34250627892
-
Geometric singular perturbation theory of ordinary differential equations
-
Fenichel N. Geometric singular perturbation theory of ordinary differential equations. J. Differ. Equat. 1979, 31:53.
-
(1979)
J. Differ. Equat.
, vol.31
, pp. 53
-
-
Fenichel, N.1
-
8
-
-
84867868676
-
Travelling front solutions arising in a chemotaxis growth model
-
Funaki M., Mimura M., Tsujikawa T. Travelling front solutions arising in a chemotaxis growth model. INSAM Rep. 1999, 46:99.
-
(1999)
INSAM Rep.
, vol.46
, pp. 99
-
-
Funaki, M.1
Mimura, M.2
Tsujikawa, T.3
-
9
-
-
0022865466
-
Nonlinear asymptotic stability of viscous shock profiles for conservation laws
-
Goodman J. Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rat. Mech. Anal. 1986, 95:325.
-
(1986)
Arch. Rat. Mech. Anal.
, vol.95
, pp. 325
-
-
Goodman, J.1
-
10
-
-
84867943821
-
A constructive approach to traveling waves in chemotaxis
-
Horstmann D., Stevens A. A constructive approach to traveling waves in chemotaxis. J. Nonlinear Sci. 2004, 14:1.
-
(2004)
J. Nonlinear Sci.
, vol.14
, pp. 1
-
-
Horstmann, D.1
Stevens, A.2
-
11
-
-
0004053060
-
Geometric singular perturbation theory, Dynamical Systems, Montecatini Terme, Italy
-
in: J. Russell (Ed.), 2nd session of the Centro Internazionale Matematico Estivo (CIME), Springer, Berlin.
-
C.K.R.T. Jones, Geometric singular perturbation theory, in: J. Russell (Ed.), Dynamical Systems, Montecatini Terme, Italy, 1994. 2nd session of the Centro Internazionale Matematico Estivo (CIME), Springer, Berlin.
-
(1994)
-
-
Jones, C.K.R.T.1
-
12
-
-
62449235559
-
Stability of shock profiles in viscoelasticity with non-convex constitutive relations
-
Kawashima S., Matsumura A. Stability of shock profiles in viscoelasticity with non-convex constitutive relations. Commun. Pure Appl. Math. 1994, 47:1547.
-
(1994)
Commun. Pure Appl. Math.
, vol.47
, pp. 1547
-
-
Kawashima, S.1
Matsumura, A.2
-
13
-
-
0014748565
-
Initiation of slime mold aggregation viewed as an instability
-
Keller E.F., Segel L.A. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 1970, 26:399.
-
(1970)
J. Theor. Biol.
, vol.26
, pp. 399
-
-
Keller, E.F.1
Segel, L.A.2
-
15
-
-
0015010990
-
Traveling bands of chemotactic bacteria: a theoretical analysis
-
Keller E.F., Segel L.A. Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 1971, 26:235.
-
(1971)
J. Theor. Biol.
, vol.26
, pp. 235
-
-
Keller, E.F.1
Segel, L.A.2
-
16
-
-
0035287283
-
Mathematical modeling of the onset of capillary formation initiating angiogenesis
-
Levine H.A., Sleeman B.D., Nilsen-Hamilton M. Mathematical modeling of the onset of capillary formation initiating angiogenesis. J. Math. Biol. 2001, 42(3):195.
-
(2001)
J. Math. Biol.
, vol.42
, Issue.3
, pp. 195
-
-
Levine, H.A.1
Sleeman, B.D.2
Nilsen-Hamilton, M.3
-
17
-
-
0031162898
-
A system of reaction diffusion equations arising in the theory of reinforced random walks
-
Levine H.A., Sleeman B.D. A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J. Appl. Math. 1997, 57:683.
-
(1997)
SIAM J. Appl. Math.
, vol.57
, pp. 683
-
-
Levine, H.A.1
Sleeman, B.D.2
-
18
-
-
80052021624
-
On a hyperbolic-parabolic system modeling chemotaxis
-
Li D., Li T., Zhao K. On a hyperbolic-parabolic system modeling chemotaxis. Math. Models Methods Appl. Sci. 2011, 21:1631.
-
(2011)
Math. Models Methods Appl. Sci.
, vol.21
, pp. 1631
-
-
Li, D.1
Li, T.2
Zhao, K.3
-
19
-
-
67349244630
-
Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion
-
Li T. Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion. SIAM J. Math. Anal. 2008, 40:1058.
-
(2008)
SIAM J. Math. Anal.
, vol.40
, pp. 1058
-
-
Li, T.1
-
20
-
-
73949089999
-
Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis
-
Li T., Wang Z.A. Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis. SIAM. J. Appl. Math. 2009, 70:1522.
-
(2009)
SIAM. J. Appl. Math.
, vol.70
, pp. 1522
-
-
Li, T.1
Wang, Z.A.2
-
21
-
-
78349311551
-
Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis
-
Li T., Wang Z.A. Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis. Math. Models Methods Appl. Sci. 2010, 20:1967.
-
(2010)
Math. Models Methods Appl. Sci.
, vol.20
, pp. 1967
-
-
Li, T.1
Wang, Z.A.2
-
22
-
-
78349306274
-
Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis
-
Li T., Wang Z.A. Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis. J. Differ. Equat. 2011, 250:1310.
-
(2011)
J. Differ. Equat.
, vol.250
, pp. 1310
-
-
Li, T.1
Wang, Z.A.2
-
23
-
-
84867095447
-
The existence of traveling waves in a biological model for chemotaxis
-
(in Chinese)
-
Li Y. The existence of traveling waves in a biological model for chemotaxis. Acta Math. Appl. Sinica 2004, 27:123. (in Chinese).
-
(2004)
Acta Math. Appl. Sinica
, vol.27
, pp. 123
-
-
Li, Y.1
-
24
-
-
0001192857
-
Nonlinear stability of shock waves for viscous conservation laws
-
Liu T.P. Nonlinear stability of shock waves for viscous conservation laws. Mem. Amer. Math. Soc. 1986, 328:1.
-
(1986)
Mem. Amer. Math. Soc.
, vol.328
, pp. 1
-
-
Liu, T.P.1
-
25
-
-
70349673846
-
Time-asymptotic behavior of wave propagation around a viscous shock profile
-
Liu T.P., Zeng Y. Time-asymptotic behavior of wave propagation around a viscous shock profile. Commun. Math. Phys. 2009, 290:23.
-
(2009)
Commun. Math. Phys.
, vol.290
, pp. 23
-
-
Liu, T.P.1
Zeng, Y.2
-
26
-
-
77956173978
-
Traveling wave solutions from microscopic to macroscopic chemotaxis models
-
Lui R., Wang Z.A. Traveling wave solutions from microscopic to macroscopic chemotaxis models. J. Math. Biol. 2010, 61:739.
-
(2010)
J. Math. Biol.
, vol.61
, pp. 739
-
-
Lui, R.1
Wang, Z.A.2
-
27
-
-
84867860603
-
Local well posedness and instability of travelling waves in a chemotaxis model
-
Meyries M. Local well posedness and instability of travelling waves in a chemotaxis model. Adv. Differ. Equat. 2011, 16:31.
-
(2011)
Adv. Differ. Equat.
, vol.16
, pp. 31
-
-
Meyries, M.1
-
28
-
-
0026305804
-
Traveling waves in a chemotaxis model
-
Nagai T., Ikeda T. Traveling waves in a chemotaxis model. J. Math. Biol. 1991, 30:169.
-
(1991)
J. Math. Biol.
, vol.30
, pp. 169
-
-
Nagai, T.1
Ikeda, T.2
-
29
-
-
0016591460
-
Analytically solution to the initial-value problem for traveling bands of chemotaxis bacteria
-
Rosen G. Analytically solution to the initial-value problem for traveling bands of chemotaxis bacteria. J. Theor. Biol. 1975, 49:311.
-
(1975)
J. Theor. Biol.
, vol.49
, pp. 311
-
-
Rosen, G.1
-
30
-
-
0018181645
-
Steady-state distribution of bacteria chemotaxis toward oxygen
-
Rosen G. Steady-state distribution of bacteria chemotaxis toward oxygen. Bull. Math. Biol. 1978, 40:671.
-
(1978)
Bull. Math. Biol.
, vol.40
, pp. 671
-
-
Rosen, G.1
-
31
-
-
0020597747
-
Theoretical significance of the condition δ=2μ in bacterial chemotaxis
-
Rosen G. Theoretical significance of the condition δ=2μ in bacterial chemotaxis. Bull. Math. Biol. 1983, 45:151.
-
(1983)
Bull. Math. Biol.
, vol.45
, pp. 151
-
-
Rosen, G.1
-
32
-
-
48449096513
-
On the stability of steadily propagating bands of chemotactic bacteria
-
Rosen G., Baloga S. On the stability of steadily propagating bands of chemotactic bacteria. Math. Biosci. 1975, 24:273.
-
(1975)
Math. Biosci.
, vol.24
, pp. 273
-
-
Rosen, G.1
Baloga, S.2
-
33
-
-
21144471868
-
Nonlinear stability of viscous shock waves
-
Szepessy A., Xin Z.P. Nonlinear stability of viscous shock waves. Arch. Rat. Mech. Anal. 1993, 122:53.
-
(1993)
Arch. Rat. Mech. Anal.
, vol.122
, pp. 53
-
-
Szepessy, A.1
Xin, Z.P.2
-
34
-
-
84867055448
-
Wavefront of an angiogenesis model
-
Wang Z.A. Wavefront of an angiogenesis model. Discrete Cont. Dyn. Syst-Series B 2012, 17(8):2849-2860.
-
(2012)
Discrete Cont. Dyn. Syst-Series B
, vol.17
, Issue.8
, pp. 2849-2860
-
-
Wang, Z.A.1
|