메뉴 건너뛰기




Volumn 15, Issue 4, 2012, Pages 459-475

Detecting unknown computer worm activity via support vector machines and active learning

Author keywords

Active learning; Malware detection; Supervised learning

Indexed keywords


EID: 84867852050     PISSN: 14337541     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10044-012-0296-4     Document Type: Article
Times cited : (58)

References (49)
  • 4
    • 33845768389 scopus 로고    scopus 로고
    • Learning to detect and classify malicious executables in the wild
    • Zico Kolter J, Maloof MA (2006) Learning to detect and classify malicious executables in the wild. J Mach Learn Res.
    • (2006) J Mach Learn Res
    • Zico Kolter, J.1    Maloof, M.A.2
  • 6
    • 42749086128 scopus 로고    scopus 로고
    • Detection of unknown computer worms based on behavioral classification of the host
    • Moskovitch R, Elovici Y, Rokach L (2008) Detection of unknown computer worms based on behavioral classification of the host. Comput Stat Data Anal 52(9): 4544-4566.
    • (2008) Comput Stat Data Anal , vol.52 , Issue.9 , pp. 4544-4566
    • Moskovitch, R.1    Elovici, Y.2    Rokach, L.3
  • 7
    • 58549090885 scopus 로고    scopus 로고
    • Improving malware detection by applying multi-inducer ensemble
    • Menahem E, Shabtai A, Rokach L, Elovici Y (2009) Improving malware detection by applying multi-inducer ensemble. Comput Stat Data Anal 53(4): 1483-1494.
    • (2009) Comput Stat Data Anal , vol.53 , Issue.4 , pp. 1483-1494
    • Menahem, E.1    Shabtai, A.2    Rokach, L.3    Elovici, Y.4
  • 12
    • 84867889389 scopus 로고    scopus 로고
    • Cert (Online; Accessed 23 July 2012)
    • Cert (2000) Multiple denial-of-Service problems in ISC BIND. http://www. cert. org/advisories/CA-2000-20. html. (Online; Accessed 23 July 2012).\
    • (2000) Multiple denial-of-Service problems in ISC BIND
  • 14
    • 34249865012 scopus 로고    scopus 로고
    • Research on intrusion detection and response: a survey
    • P Kabiri, Ghorbani Ali A (2005) Research on intrusion detection and response: a survey. Int J Netw Security 1: 84-102.
    • (2005) Int J Netw Security , vol.1 , pp. 84-102
    • Peyman, K.1    Ghorbani Ali, A.2
  • 16
    • 2442526701 scopus 로고    scopus 로고
    • Unsupervised learning techniques for an intrusion detection system
    • SAC '04, ACM, New York, NY, USA
    • Zanero S, Savaresi SM (2004) Unsupervised learning techniques for an intrusion detection system. In: Proceedings of the 2004 ACM symposium on applied computing, SAC '04, ACM, New York, NY, USA, pp 412-419.
    • (2004) Proceedings of the 2004 ACM symposium on applied computing , pp. 412-419
    • Zanero, S.1    Savaresi, S.M.2
  • 18
    • 4544251643 scopus 로고    scopus 로고
    • Network intrusion detection using an improved competitive learning neural network
    • second annual conference
    • Lei JZ, Ghorbani A (2004) Network intrusion detection using an improved competitive learning neural network. In: Communication networks and services research, 2004, Proceedings. second annual conference, pp 190-197.
    • (2004) Communication networks and services research, 2004, Proceedings , pp. 190-197
    • Lei, J.Z.1    Ghorbani, A.2
  • 21
    • 0033681199 scopus 로고    scopus 로고
    • Fuzzy network profiling for intrusion detection
    • 19th International Conference of the North American
    • Dickerson JE, Dickerson JA (2000) Fuzzy network profiling for intrusion detection. In: Fuzzy Information Processing Society, NAFIPS, 19th International Conference of the North American, pp 301-306.
    • (2000) Fuzzy Information Processing Society, NAFIPS , pp. 301-306
    • Dickerson, J.E.1    Dickerson, J.A.2
  • 22
    • 3042514639 scopus 로고    scopus 로고
    • Associate Professor and Associate Professor Fuzzy data mining and genetic algorithms applied to intrusion detection
    • (NISSC)
    • Bridges SM, Vaughn RB (2000) Associate Professor and Associate Professor Fuzzy data mining and genetic algorithms applied to intrusion detection. In: Proceedings of the national information systems security conference (NISSC), pp 6-19.
    • (2000) Proceedings of the national information systems security conference , pp. 6-19
    • Bridges, S.M.1    Vaughn, R.B.2
  • 23
    • 0038103911 scopus 로고    scopus 로고
    • Utilising fuzzy logic and trend analysis for effective intrusion detection
    • Botha M, von Solms R (2003) Utilising fuzzy logic and trend analysis for effective intrusion detection. Comput Amp Security 22(5): 423-434.
    • (2003) Comput Amp Security , vol.22 , Issue.5 , pp. 423-434
    • Botha, M.1    von Solms, R.2
  • 26
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • ICML '01. Morgan Kaufmann Publishers Inc, San Francisco
    • Roy N, McCallum A (2001) Toward optimal active learning through sampling estimation of error reduction. In: Proceedings of the eighteenth international conference on machine learning, ICML '01. Morgan Kaufmann Publishers Inc, San Francisco, pp 441-448.
    • (2001) Proceedings of the eighteenth international conference on machine learning , pp. 441-448
    • Roy, N.1    McCallum, A.2
  • 27
    • 84880757496 scopus 로고    scopus 로고
    • Active cost-sensitive learning
    • Margineantu DD (2005) Active cost-sensitive learning. In: IJCAI, pp 1622-1613.
    • (2005) IJCAI , pp. 1613-1622
    • Margineantu, D.D.1
  • 29
    • 84990303629 scopus 로고    scopus 로고
    • Witten ih, frank e: data mining: practical machine learning tools and techniques
    • Francisco A (2006) Witten ih, frank e: data mining: practical machine learning tools and techniques. BioMed Eng OnLine 5: 1-2.
    • (2006) BioMed Eng OnLine , vol.5 , pp. 1-2
    • Francisco, A.1
  • 30
    • 70349826365 scopus 로고
    • C4. 5: programs for machine learning
    • San Francisco, CA, USA
    • Ross Quinlan J (1993) C4. 5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
    • (1993) Morgan Kaufmann Publishers Inc
    • Ross Quinlan, J.1
  • 32
    • 46149134436 scopus 로고
    • Fusion propagation, and structuring in belief networks
    • Pearl J (1986) Fusion propagation, and structuring in belief networks. Artif Intel 29(3): 241-288.
    • (1986) Artif Intel , vol.29 , Issue.3 , pp. 241-288
    • Pearl, J.1
  • 33
    • 33646887241 scopus 로고    scopus 로고
    • Selective voting-getting more for less in sensor fusion
    • Lior R, Oded M, Reuven A (2006) Selective voting-getting more for less in sensor fusion. IJPRAI 20(3): 329-350.
    • (2006) Ijprai , vol.20 , Issue.3 , pp. 329-350
    • Lior, R.1    Oded, M.2    Reuven, A.3
  • 34
    • 34547761741 scopus 로고    scopus 로고
    • A methodology for improving the performance of non-ranker feature selection filters
    • Lior R, Barak C, Oded M (2007) A methodology for improving the performance of non-ranker feature selection filters. IJPRAI 21(5): 809-830.
    • (2007) Ijprai , vol.21 , Issue.5 , pp. 809-830
    • Lior, R.1    Barak, C.2    Oded, M.3
  • 35
    • 49549094278 scopus 로고    scopus 로고
    • Negation recognition in medical narrative reports
    • Rokach L, Romano R, Maimon O (2008) Negation recognition in medical narrative reports. Inf Retrieval 11(6): 499-538.
    • (2008) Inf Retrieval , vol.11 , Issue.6 , pp. 499-538
    • Rokach, L.1    Romano, R.2    Maimon, O.3
  • 38
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • CJC Burges (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2): 121-167.
    • (1998) Data Min Knowl Discov , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 39
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman A, Braverman EM, LI Rozoner (1964) Theoretical foundations of the potential function method in pattern recognition learning. Automat Remote Control 25: 821-837.
    • (1964) Automation Remote Control , vol.25 , pp. 821-837
    • Aizerman, A.1    Braverman, E.M.2    Rozoner, L.I.3
  • 45
    • 67650251631 scopus 로고    scopus 로고
    • Malicious code detection using active learning
    • Bonchi F, Ferrari E, Jiang W, Malin B (eds) Springer, Berlin, Heidelberg
    • Moskovitch R, Nissim N, Elovici Y (2009) Malicious code detection using active learning. In: Bonchi F, Ferrari E, Jiang W, Malin B (eds) Privacy, Security, and Trust in KDD. Lecture notes in computer science, vol 5456, pp 74-91. Springer, Berlin, Heidelberg.
    • (2009) Privacy, Security, and Trust in KDD. Lecture notes in computer science , vol.5456 , pp. 74-91
    • Moskovitch, R.1    Nissim, N.2    Elovici, Y.3
  • 46
    • 2542488394 scopus 로고    scopus 로고
    • Servedio smooth boosting and learning with malicious noise
    • Rocco A (2003) Servedio smooth boosting and learning with malicious noise J Mach Learn Res 4: 633-648.
    • (2003) J Mach Learn Res , vol.4 , pp. 633-648
    • Rocco, A.1
  • 47
    • 70449369080 scopus 로고    scopus 로고
    • Co-training semi-supervised active learning algorithm based on noise filter
    • IEEE Computer Society, Washington, DC, USA
    • Chen Y, Zhan Y (2009) Co-training semi-supervised active learning algorithm based on noise filter. In: Proceedings of the 2009 WRI global congress on intelligent systems, GCIS '09, vol 03. IEEE Computer Society, Washington, DC, USA, pp 524-528.
    • (2009) Proceedings of the 2009 WRI global congress on intelligent systems, GCIS '09 , vol.3 , pp. 524-528
    • Chen, Y.1    Zhan, Y.2
  • 49
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G (2003) An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res.
    • (2003) J Mach Learn Res
    • Forman, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.