-
1
-
-
0001055055
-
Uniqueness and convergence of successive approximations for ordinary differential equations
-
Athanassov Z. S.: Uniqueness and convergence of successive approximations for ordinary differential equations. Math. Jpn. 35, 351-367 (1990).
-
(1990)
Math. Jpn.
, vol.35
, pp. 351-367
-
-
Athanassov, Z.S.1
-
3
-
-
58149362915
-
Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes
-
Chemin J. Y., Lerner N.: Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes. J. Differ. Equ. 121, 314-328 (1995).
-
(1995)
J. Differ. Equ.
, vol.121
, pp. 314-328
-
-
Chemin, J.Y.1
Lerner, N.2
-
4
-
-
80051577677
-
On the unicity of solutions for high-order differential equations
-
Constantin A.: On the unicity of solutions for high-order differential equations. Istituto Lombardo (Rend. Sci.) A 130, 171-181 (1996).
-
(1996)
Istituto Lombardo (Rend. Sci.) A
, vol.130
, pp. 171-181
-
-
Constantin, A.1
-
5
-
-
33750526877
-
The trajectories of particles in Stokes waves
-
Constantin A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523-535 (2006).
-
(2006)
Invent. Math.
, vol.166
, pp. 523-535
-
-
Constantin, A.1
-
6
-
-
77953675181
-
On Nagumo's theorem
-
Constantin A.: On Nagumo's theorem. Proc. Jpn. Acad. 86(A), 41-44 (2010).
-
(2010)
Proc. Jpn. Acad.
, vol.86
, Issue.A
, pp. 41-44
-
-
Constantin, A.1
-
7
-
-
79952706313
-
A dynamical systems approach towards isolated vorticity regions for tsunami background states
-
Constantin A.: A dynamical systems approach towards isolated vorticity regions for tsunami background states. Arch. Rat. Mech. Anal. 200, 239-253 (2011).
-
(2011)
Arch. Rat. Mech. Anal.
, vol.200
, pp. 239-253
-
-
Constantin, A.1
-
8
-
-
38249028645
-
Uniqueness for a class of nonlinear initial value problems
-
Kaper H. G., Kwong M. K.: Uniqueness for a class of nonlinear initial value problems. J. Math. Anal. Appl. 130, 467-473 (1988).
-
(1988)
J. Math. Anal. Appl.
, vol.130
, pp. 467-473
-
-
Kaper, H.G.1
Kwong, M.K.2
-
9
-
-
80051578975
-
Some remarks on Nagumo's theorem
-
(to appear)
-
Mejstrik, T.: Some remarks on Nagumo's theorem. Czechoslov. Math. J. (to appear).
-
Czechoslov. Math. J.
-
-
Mejstrik, T.1
-
10
-
-
84862325200
-
On the uniqueness of flow in a recent tsunami model
-
accepted
-
Mustafa, O. G.: On the uniqueness of flow in a recent tsunami model, Applicable Analysis, accepted. http://arxiv. org/abs/1103. 2470.
-
Applicable Analysis
-
-
Mustafa, O.G.1
-
11
-
-
12244273477
-
Eine hinreichende Bedingung für die Unität der Lösung von Differentialgleichungen erster Ordnung
-
Reprinted In: Mitio Nagumo Collected Papers, Eds. M. Yamaguti, L. Nirenberg, S. Mizohata, Y. Sibuya, Springer, Tokyo, 1993
-
Nagumo, M.: Eine hinreichende Bedingung für die Unität der Lösung von Differentialgleichungen erster Ordnung. Jpn. J. Math. 3, 107-112 (1926) Reprinted In: Mitio Nagumo Collected Papers, Eds. M. Yamaguti, L. Nirenberg, S. Mizohata, Y. Sibuya, Springer, Tokyo, 1993.
-
(1926)
Jpn. J. Math.
, vol.3
, pp. 107-112
-
-
Nagumo, M.1
-
12
-
-
80051591627
-
Eine hinreichende Bedingung für die Unität der Lösung von gewöhnlichen Differentialgleichungen n-ter Ordnung
-
Reprinted In: Mitio Nagumo Collected Papers, Eds. M. Yamaguti, L. Nirenberg, S. Mizohata, Y. Sibuya, Springer, Tokyo, 1993
-
Nagumo, M.: Eine hinreichende Bedingung für die Unität der Lösung von gewöhnlichen Differentialgleichungen n-ter Ordnung, Japan J. Math. 4, 307-309 (1927) Reprinted In: Mitio Nagumo Collected Papers, Eds. M. Yamaguti, L. Nirenberg, S. Mizohata, Y. Sibuya, Springer, Tokyo, 1993.
-
(1927)
Japan J. Math.
, vol.4
, pp. 307-309
-
-
Nagumo, M.1
-
13
-
-
0003353148
-
Nonlinear wave equations, CBMS Regional Conference Series in Mathematics
-
Strauss, W.: Nonlinear wave equations, CBMS Regional Conference Series in Mathematics. Am. Math. Soc. Providence (1989).
-
(1989)
Am. Math. Soc. Providence
-
-
Strauss, W.1
-
14
-
-
84990576581
-
Uniqueness and nonuniqueness for positive radial solutions of Δu + f(u, r) = 0
-
Ni W. M., Nussbaum R.: Uniqueness and nonuniqueness for positive radial solutions of Δu + f(u, r) = 0. Commun. Pure Appl. Math. 38, 67-108 (1985).
-
(1985)
Commun. Pure Appl. Math.
, vol.38
, pp. 67-108
-
-
Ni, W.M.1
Nussbaum, R.2
-
16
-
-
10044261928
-
Uniqueness for autonomous planar differential equations and the Lagrangian formulation of water flows with vorticity
-
Wahlén E.: Uniqueness for autonomous planar differential equations and the Lagrangian formulation of water flows with vorticity. J. Nonlinear Math. Phys. 11, 549-555 (2004).
-
(2004)
J. Nonlinear Math. Phys.
, vol.11
, pp. 549-555
-
-
Wahlén, E.1
|