-
2
-
-
79952605608
-
Computational and structural advantages of circular boundary representation
-
Aichholzer O., Aurenhammer F., Hackl T., Jüttler B., Oberneder M., Šír Z.: Computational and structural advantages of circular boundary representation. Int. J. Computat. Geom. Appl. 21, 47-69 (2011).
-
(2011)
Int. J. Computat.Geom. Appl.
, vol.21
, pp. 47-69
-
-
Aichholzer, O.1
Aurenhammer, F.2
Hackl, T.3
Jüttler, B.4
Oberneder, M.5
Šír, Z.6
-
4
-
-
0023287929
-
Power diagrams: properties, algorithms, and applications
-
Aurenhammer F.: Power diagrams: properties, algorithms, and applications. SIAM J. Comput. 16, 78-96 (1987).
-
(1987)
SIAM J. Comput.
, vol.16
, pp. 78-96
-
-
Aurenhammer, F.1
-
5
-
-
52449145660
-
Convex hulls of objects bounded by algebraic curves
-
Bajaj C. L., Kim M.-S.: Convex hulls of objects bounded by algebraic curves. Algorithmica 6, 533-553 (1991).
-
(1991)
Algorithmica
, vol.6
, pp. 533-553
-
-
Bajaj, C.L.1
Kim, M.-S.2
-
6
-
-
0001430830
-
An algorithm for constructing the convex hull of a set of spheres in dimension d
-
Boissonnat J.-D., Cerezo A., Devillers O., Duquesne J., Yvinec M.: An algorithm for constructing the convex hull of a set of spheres in dimension d. Comput. Geom. Theory Appl. 6, 123-130 (1996).
-
(1996)
Comput. Geom. Theory Appl.
, vol.6
, pp. 123-130
-
-
Boissonnat, J.-D.1
Cerezo, A.2
Devillers, O.3
Duquesne, J.4
Yvinec, M.5
-
7
-
-
27144535937
-
Convex hull and Voronoi diagram of additively weighted points
-
Springer LNCS
-
Boissonnat, J.-D., Delage, C.: Convex hull and Voronoi diagram of additively weighted points. In: Proceedings 13th European Symposium on Algorithms, vol. 3669, pp. 367-378, Springer LNCS (2005).
-
(2005)
Proceedings 13th European Symposium on Algorithms
, vol.3669
, pp. 367-378
-
-
Boissonnat, J.-D.1
Delage, C.2
-
9
-
-
52449144808
-
Computational geometry in a curved world
-
Dobkin D. P., Souvaine D. L.: Computational geometry in a curved world. Algorithmica 5, 421-457 (1990).
-
(1990)
Algorithmica
, vol.5
, pp. 421-457
-
-
Dobkin, D.P.1
Souvaine, D.L.2
-
10
-
-
0032288587
-
Support function representation of convex bodies, its application in geometric computing, and some related representations
-
Ghosh P. K., Kumar K. V.: Support function representation of convex bodies, its application in geometric computing, and some related representations. Comput. Vision Image Underst. 72, 397-403 (1998).
-
(1998)
Comput. Vision Image Underst.
, vol.72
, pp. 397-403
-
-
Ghosh, P.K.1
Kumar, K.V.2
-
11
-
-
49649136358
-
An efficient algorithm for determining the convex hull of a finite point set
-
Graham R.: An efficient algorithm for determining the convex hull of a finite point set. Inf. Process. Lett. 1, 132-133 (1972).
-
(1972)
Inf. Process. Lett.
, vol.1
, pp. 132-133
-
-
Graham, R.1
-
13
-
-
0015599132
-
On the identification of the convex hull of a finite set of points in the plane
-
Jarvis R. A.: On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett. 2, 18-21 (1973).
-
(1973)
Inf. Process. Lett.
, vol.2
, pp. 18-21
-
-
Jarvis, R.A.1
-
14
-
-
0022663183
-
The ultimate planar convex hull algorithm?
-
Kirkpatrick D. G., Seidel R.: The ultimate planar convex hull algorithm?. SIAM J. Comput. 15, 287-299 (1986).
-
(1986)
SIAM J. Comput.
, vol.15
, pp. 287-299
-
-
Kirkpatrick, D.G.1
Seidel, R.2
-
15
-
-
24144470827
-
Smoothing an arc spline
-
Li Z., Meek D. S.: Smoothing an arc spline. Comput. Graph. 29, 576-587 (2005).
-
(2005)
Comput. Graph.
, vol.29
, pp. 576-587
-
-
Li, Z.1
Meek, D.S.2
-
16
-
-
0023330010
-
On-line construction of the convex hull of a simple polygon
-
Melkman A.: On-line construction of the convex hull of a simple polygon. Inf. Process. Lett. 25, 11-12 (1987).
-
(1987)
Inf. Process. Lett.
, vol.25
, pp. 11-12
-
-
Melkman, A.1
-
17
-
-
0032347666
-
An output-sensitive convex hull algorithm for planar objects
-
Nielsen F., Yvinec M.: An output-sensitive convex hull algorithm for planar objects. Int. J. Comput. Geom. Appl. 8, 39-65 (1998).
-
(1998)
Int. J. Comput. Geom. Appl.
, vol.8
, pp. 39-65
-
-
Nielsen, F.1
Yvinec, M.2
-
18
-
-
0037105879
-
Biarc approximation of NURBS curves
-
Piegl L. A., Tiller W.: Biarc approximation of NURBS curves. Comput. Aided Des. 34, 807-814 (2002).
-
(2002)
Comput. Aided Des.
, vol.34
, pp. 807-814
-
-
Piegl, L.A.1
Tiller, W.2
-
20
-
-
38249015751
-
A convex hull algorithm for discs, and applications
-
Rappaport D.: A convex hull algorithm for discs, and applications. Comput. Geom. Theory Appl. 1, 171-187 (1992).
-
(1992)
Comput. Geom. Theory Appl.
, vol.1
, pp. 171-187
-
-
Rappaport, D.1
-
21
-
-
0031484729
-
Approximation of planar convex sets from hyperplanes probes
-
Richardson T. J.: Approximation of planar convex sets from hyperplanes probes. Discret. Comput. Geom. 18, 151-177 (1997).
-
(1997)
Discret. Comput. Geom.
, vol.18
, pp. 151-177
-
-
Richardson, T.J.1
-
22
-
-
38249037807
-
Convex hulls of piecewise-smooth Jordan curves
-
Schäffer A. A., van Wyk C. J.: Convex hulls of piecewise-smooth Jordan curves. J. Algorithms 8, 66-94 (1987).
-
(1987)
J. Algorithms
, vol.8
, pp. 66-94
-
-
Schäffer, A.A.1
van Wyk, C.J.2
-
24
-
-
0033279801
-
Convex hull of a planar set of straight and circular line segments
-
Yue Y., Murray J. L., Corney J. R., Clark D. E. R.: Convex hull of a planar set of straight and circular line segments. Eng. Comput. 16, 858-875 (1999).
-
(1999)
Eng. Comput.
, vol.16
, pp. 858-875
-
-
Yue, Y.1
Murray, J.L.2
Corney, J.R.3
Clark, D.E.R.4
-
25
-
-
0346755279
-
An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments
-
Yap C. K.: An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments. Discret. Comput. Geom. 2, 365-393 (1987).
-
(1987)
Discret. Comput. Geom.
, vol.2
, pp. 365-393
-
-
Yap, C.K.1
|