메뉴 건너뛰기




Volumn , Issue , 2012, Pages

Backpropagation method with type-2 fuzzy weight adjustment for neural network learning

Author keywords

Backpropagation Algorithm; Neural Networks; Type 2 fuzzy system; Type 2 Fuzzy Weights

Indexed keywords

ENSEMBLE NEURAL NETWORK; FUZZY WEIGHT; LEARNING METHODS; MATHEMATICAL ANALYSIS; NEURAL NETWORK LEARNING; TIME SERIES PREDICTION; TYPE-2 FUZZY SYSTEMS;

EID: 84867716737     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/NAFIPS.2012.6291056     Document Type: Conference Paper
Times cited : (6)

References (33)
  • 1
    • 0038530960 scopus 로고    scopus 로고
    • Two Bayesian Methods for Junction Detection
    • M. Cazorla and F. Escolano, "Two Bayesian Methods for Junction Detection", IEEE transaction on Image Processing, vol. 12, Issue 3, pp. 317-327, 2003.
    • (2003) IEEE Transaction on Image Processing , vol.12 , Issue.3 , pp. 317-327
    • Cazorla, M.1    Escolano, F.2
  • 2
    • 33845442845 scopus 로고    scopus 로고
    • Modular Neural Networks and Fuzzy Sugeno Integral for Face and Fingerprint Recognition
    • G. Martinez, P. Melin, D. Bravo, F. Gonzalez and M. Gonzalez, "Modular Neural Networks and Fuzzy Sugeno Integral for Face and Fingerprint Recognition", Advances in Soft computing, vol .34, pp. 603-618, 2006.
    • (2006) Advances in Soft Computing , vol.34 , pp. 603-618
    • Martinez, G.1    Melin, P.2    Bravo, D.3    Gonzalez, F.4    Gonzalez, M.5
  • 3
    • 0031128189 scopus 로고    scopus 로고
    • The Magnitude of the Diagonal Elements in Neural Networks
    • O. De Wilde, "The Magnitude of the Diagonal Elements in Neural Networks", Neural Networks, vol. 10 (3), pp. 499-504, 1997.
    • (1997) Neural Networks , vol.10 , Issue.3 , pp. 499-504
    • De Wilde, O.1
  • 4
    • 51849156391 scopus 로고    scopus 로고
    • A New Biometric Recognition Technique Based on Hand Geometry and Voice Using Neural Networks and Fuzzy Logic
    • P.A. Salazar, P. Melin and O. Castillo, "A New Biometric Recognition Technique Based on Hand Geometry and Voice Using Neural Networks and Fuzzy Logic", Soft Computing for Hybrid Intelligent Systems, pp. 171-186, 2008.
    • (2008) Soft Computing for Hybrid Intelligent Systems , pp. 171-186
    • Salazar, P.A.1    Melin, P.2    Castillo, O.3
  • 5
    • 0028430459 scopus 로고
    • Analysis of the Back-Propagation Algorithm with Momentum
    • V.V. Phansalkar and P.S. Sastry, "Analysis of the Back-Propagation Algorithm with Momentum", IEEE Transactions on Neural Networks, vol. 5 (3). pp. 505-506, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.3 , pp. 505-506
    • Phansalkar, V.V.1    Sastry, P.S.2
  • 6
    • 34648852323 scopus 로고    scopus 로고
    • Locally Recurrent Neural Networks for Wind Speed Prediction using Spatial Correlation
    • T.G. Barbounis and J.B. Theocharis, "Locally Recurrent Neural Networks for Wind Speed Prediction using Spatial Correlation", Information Sciences, vol. 177 (24), pp. 5775-5797, 2007.
    • (2007) Information Sciences , vol.177 , Issue.24 , pp. 5775-5797
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 7
    • 0032792817 scopus 로고    scopus 로고
    • Additive Neural Networks and Periodic Patterns
    • T. Gedeon, "Additive Neural Networks and Periodic Patterns", Neural Networks, vol. 12 (4-5), pp. 617-626, 1999.
    • (1999) Neural Networks , vol.12 , Issue.4-5 , pp. 617-626
    • Gedeon, T.1
  • 8
    • 0030220517 scopus 로고    scopus 로고
    • Approximating Functions by Neural Networks: A Constructive Solution in the Uniform Norm
    • M. Meltser, M. Shoham and L. Manevitz, "Approximating Functions by Neural Networks: A Constructive Solution in the Uniform Norm", Neural Networks, vol. 9 (6), pp. 965-978, 1996.
    • (1996) Neural Networks , vol.9 , Issue.6 , pp. 965-978
    • Meltser, M.1    Shoham, M.2    Manevitz, L.3
  • 9
    • 67651001563 scopus 로고    scopus 로고
    • Radial Basis Function Network Learning using Localized Generalization Error Bound
    • D. Yeung, P. Chan and W. Ng, "Radial Basis Function Network Learning using Localized Generalization Error Bound", Information Sciences, vol. 179 (19), pp. 3199-3217, 2009.
    • (2009) Information Sciences , vol.179 , Issue.19 , pp. 3199-3217
    • Yeung, D.1    Chan, P.2    Ng, W.3
  • 10
    • 0028835068 scopus 로고
    • A Classifier Neural Net with Complex-Valued Weights and Square-Law Nonlinearities
    • D. Casasent and S. Natarajan, "A Classifier Neural Net with Complex-Valued Weights and Square-Law Nonlinearities", Neural Networks, vol. 8 (6), pp. 989-998, 1995.
    • (1995) Neural Networks , vol.8 , Issue.6 , pp. 989-998
    • Casasent, D.1    Natarajan, S.2
  • 11
    • 0035989190 scopus 로고    scopus 로고
    • On the Capabilities of Neural Networks using Limited Precision Weights
    • S. Draghici, "On the Capabilities of Neural Networks using Limited Precision Weights", Neural Networks, vol. 15 (3), pp. 395-414, 2002.
    • (2002) Neural Networks , vol.15 , Issue.3 , pp. 395-414
    • Draghici, S.1
  • 12
    • 0035989186 scopus 로고    scopus 로고
    • Transformations of Sigma-Pi Nets: Obtaining Reflected Functions by Reflecting Weight Matrices
    • R.S. Neville and S. Eldridge, "Transformations of Sigma-Pi Nets: Obtaining Reflected Functions by Reflecting Weight Matrices", Neural Networks, vol. 15 (3), pp. 375-393, 2002.
    • (2002) Neural Networks , vol.15 , Issue.3 , pp. 375-393
    • Neville, R.S.1    Eldridge, S.2
  • 13
    • 0033990683 scopus 로고    scopus 로고
    • A Weight Initialization Method for Improving Training Speed in Feedforward Neural Network
    • J. Yam and T. Chow, "A Weight Initialization Method for Improving Training Speed in Feedforward Neural Network", Neurocomputing, vol. 30 (1-4), pp. 219-232, 2000.
    • (2000) Neurocomputing , vol.30 , Issue.1-4 , pp. 219-232
    • Yam, J.1    Chow, T.2
  • 15
    • 0000615669 scopus 로고
    • Function Minimization by Conjugate Gradients
    • R. Fletcher and C.M. Reeves, "Function Minimization by Conjugate Gradients", Computer Journal, vol. 7, pp. 149-154, 1964.
    • (1964) Computer Journal , vol.7 , pp. 149-154
    • Fletcher, R.1    Reeves, C.M.2
  • 16
    • 33846446220 scopus 로고
    • Restart Procedures for the Conjugate Gradient Method
    • M . J . D Powell, "Restart Procedures for the Conjugate Gradient Method", Mathematical Programming, vol. 12, pp. 241-254, 1977.
    • (1977) Mathematical Programming , vol.12 , pp. 241-254
    • Powell, M.J.D.1
  • 17
    • 0010515793 scopus 로고
    • A Derivation of Conjugate Gradients
    • FA Lootsma ed., Academic Press, London
    • E.M.L. Beale, "A Derivation of Conjugate Gradients", FA Lootsma ed., Numerical methods for nonlinear optimization, Academic Press, London, pp. 39-43, 1972.
    • (1972) Numerical Methods for Nonlinear Optimization , pp. 39-43
    • Beale, E.M.L.1
  • 18
    • 0027205884 scopus 로고
    • A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning
    • M.F. Moller, "A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning", Neural Networks, vol. 6, pp. 525-533, 1993.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 19
    • 0032830354 scopus 로고    scopus 로고
    • Accelerating Neural Network Training using Weight Extrapolations
    • S. Kamarthi and S. Pittner, "Accelerating Neural Network Training using Weight Extrapolations", Neural Networks, vol. 12 (9), pp. 1285-1299, 1999.
    • (1999) Neural Networks , vol.12 , Issue.9 , pp. 1285-1299
    • Kamarthi, S.1    Pittner, S.2
  • 23
    • 64549090645 scopus 로고    scopus 로고
    • A Hybrid Learning Algorithm for a Class of Interval Type-2 Fuzzy Neural Networks
    • J. Castro, O. Castillo, P. Melin and A. Rodríguez-Díaz, "A Hybrid Learning Algorithm for a Class of Interval Type-2 Fuzzy Neural Networks", Information Sciences, vol. 179 (13), pp. 2175-2193, 2009.
    • (2009) Information Sciences , vol.179 , Issue.13 , pp. 2175-2193
    • Castro, J.1    Castillo, O.2    Melin, P.3    Rodríguez-Díaz, A.4
  • 25
    • 0033323770 scopus 로고    scopus 로고
    • Applications of Type-2 Fuzzy Logic Systems to Forecasting of Time-Series
    • N. Karnik and J. Mendel, "Applications of Type-2 Fuzzy Logic Systems to Forecasting of Time-Series", Information Sciences, vol 120 (1-4). pp. 89-111, 1999.
    • (1999) Information Sciences , vol.120 , Issue.1-4 , pp. 89-111
    • Karnik, N.1    Mendel, J.2
  • 26
    • 79551558499 scopus 로고    scopus 로고
    • A Type-2 Fuzzy Wavelet Neural Network for Time Series Prediction
    • R. Abiyev, "A Type-2 Fuzzy Wavelet Neural Network for Time Series Prediction", Lecture Notes in Computer Science, vol. 6098, pp. 518-527, 2010.
    • (2010) Lecture Notes in Computer Science , vol.6098 , pp. 518-527
    • Abiyev, R.1
  • 27
    • 0034811555 scopus 로고    scopus 로고
    • A New Algorithm to Design Compact Two-Hidden-Layer Artificial Neural Networks
    • M.D. Monirul Islam and K. Murase, "A New Algorithm to Design Compact Two-Hidden-Layer Artificial Neural Networks", Neural Networks, vol. 14 (9), pp. 1265-1278, 2001.
    • (2001) Neural Networks , vol.14 , Issue.9 , pp. 1265-1278
    • Monirul Islam, M.D.1    Murase, K.2
  • 29
    • 0003536736 scopus 로고    scopus 로고
    • Ed. John Wiley and Sons, Inc., Hoboken, New Jersey
    • R. Haupt and S. Haupt, "Practical Genetic Algorithms", Ed. John Wiley and Sons, Inc., Hoboken, New Jersey, pp. 272, 2004.
    • (2004) Practical Genetic Algorithms , pp. 272
    • Haupt, R.1    Haupt, S.2
  • 30
    • 84857116526 scopus 로고    scopus 로고
    • A review on the design and optimization of interval type-2 fuzzy controllers
    • O. Castillo and P. Melin, "A review on the design and optimization of interval type-2 fuzzy controllers". Applied Soft Computing, vol. 12 (4), pp. 1267-1278, 2012.
    • (2012) Applied Soft Computing , vol.12 , Issue.4 , pp. 1267-1278
    • Castillo, O.1    Melin, P.2
  • 32
    • 46049095722 scopus 로고    scopus 로고
    • Type-2 Fuzzy Logic Controllers: A Way Forward for Fuzzy Systems in Real World Environments
    • H. Hagras, "Type-2 Fuzzy Logic Controllers: A Way Forward for Fuzzy Systems in Real World Environments", IEEE World Congress on Computational Intelligence, pp. 181-200, 2008.
    • (2008) IEEE World Congress on Computational Intelligence , pp. 181-200
    • Hagras, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.